Литмир - Электронная Библиотека
Содержание  
A
A

Впрочем, это был не только первый, но и последний квантовый парамагнитный усилитель, построенный на этилсульфате лантана с гадолинием.

Блумберхен, по-видимому, избрал этилсульфат потому, что он уже был хорошо изучен. Но этилсульфат лантана с гадолинием оказался гигроскопичным, плохо выдерживал охлаждение. Он потребовал еще дополнительных усовершенствований и так и не нашел практического применения.

Эстафета снова перебросилась через океан. В Москве, отрывая время от усовершенствования молекулярного генератора, Прохоров и его аспирант А. А. Маненков усиленно изучали парамагнитный резонанс в рубине. Маненков прибыл в ФИАН из Казани, где сложилась большая группа физиков, активно, исследовавших теорию и экспериментальные особенности «Казанского эффекта», как некоторые в шутку называют парамагнитный резонанс, открытый в Казани Е. К. Завойским.

Рубин издревле славится как драгоценный камень. Физики уже знали, что он представляет собой разновидность корунда — бесцветной окиси алюминия, — окрашенного в красный цвет вследствие примеси небольшого количества ионов хрома.

Прохоров решил исследовать рубин потому, что он химически устойчив, по твердости уступает только алмазу и обладает большой теплопроводностью. Трудно поверить, но при температуре жидкого гелия он проводит тепло лучше, чем медь. А это очень важно при работе в условиях низких температур.

В 1955 году основные исследования рубина были опубликованы. Он оказался идеальным материалом для парамагнитных усилителей радиодиапазона. Это было то, чего не хватало ученым, заинтересовавшимся статьей Блумберхена.

В последующие годы одно за другим публикуются сообщения из различных лабораторий о создании и исследовании квантовых парамагнитных усилителей. Большинство из них работает на рубине. В некоторых лабораториях испытывают и другие кристаллы, но по различным причинам дальше опытов дело не идет. Одни кристаллы слишком хрупки, в другие невозможно ввести нужное количество парамагнитных ионов, третьи гигроскопичны.

МЕНЬШЕ ШУМА!

В следующую главу мы не можем войти без рубина. Это замечательный волшебный камень, в сердце которого, как оказалось, дремлет красное солнце. Но даже до того, как физики раскрыли его главный секрет, рубин высоко ценился в технике. Его значение и до создания квантовых парамагнитных усилителей выходило далеко за пределы интересов модниц и ювелиров.

Еще в середине прошлого века ученые разработали метод получения искусственных рубинов. Это позволило широко применить рубин в приборостроении. Каждый знает, что качество часов во многом зависит от того, сколько в них «камней». «Камнями» часовщики называют изготовленные из рубина миниатюрные подшипники, в которых вращаются оси часового механизма, и маленькие зубчики на качающейся вилке часового хода. В хороших современных часах иногда более двух десятков таких камней. Подшипники из рубина применяются и в различных электроизмерительных приборах, в компасах, сейсмографах и других точных приборах.

Сейчас приборостроительная промышленность ежегодно расходует тонны искусственных рубинов. Они изготавливаются весьма прозаично: на заводах в специальных печах Вернейля. В этих печах внутри керамического теплозащитного цилиндра бушует пламя кислородо-водородных горелок. Сверху в пламя непрерывно сыплется размолотая до состояния тончайшей пудры окись алюминия, в которую добавлено небольшое количество окиси хрома. Пылинки пудры плавятся на лету и в виде мельчайших капелек падают на затравку — маленький кристаллик рубина, расположенный в нижней части пламени на специальном держателе. В то время как на затравке оседает слой жидкой окиси алюминия, держатель, медленно вращаясь вокруг оси, постепенно опускается вниз.

Спускаясь в более холодную часть печи, окись алюминия затвердевает, сливаясь с кристаллом-затравкой в единое целое. Постепенно вырастает большой прозрачный камень, похожий на застывшую каплю замерзших красных чернил.

Цвет искусственного рубина можно регулировать так же плавно, как, скажем, накал электрической лампочки или тон краски на картине художника. Нужно лишь менять содержание хрома в рубине! Для ювелирных целей и для технических применений обычно в кристалл вводится несколько процентов хрома. Но исследования Прохорова и других физиков показали, что для квантовых усилителей это не подходит. Для них необходим бледнорозовый рубин, содержащий лишь сотые доли процента хрома.

Правда, в некоторых случаях берется немного более высокая концентрация. Американский ученый Т. Мейман обнаружил, что, доведя концентрацию хрома до десятых долей процента, при которой обычные квантовые усилители уже не работают, можно создать усилитель, действующий при температуре жидкого азота, то есть при 77 градусах выше абсолютного нуля. Эффект усиления был им получен даже при температуре сухого льда (твердой углекислоты), а это 195 градусов выше абсолютного нуля. К сожалению, эти весьма интересные опыты не нашли еще практического применения. Хотя работать с жидким азотом, а тем более с сухим льдом много удобнее и дешевле, чем с жидким гелием, усилители, способные действовать при этих температурах, недостаточно хороши и пока не могут конкурировать с другими типами малошумящих усилителей.

Новым приборам было нелегко пробивать себе дорогу в жизнь. Они встречали жестокую конкуренцию со стороны других усилителей и должны были доказать свое преимущество. А преимущество было действительно бесценное.

О внутренних шумах радиоприемников знает каждый внимательный радиослушатель, каждый наблюдательный телезритель. Даже в тихой лесной избушке, удаленной от городов с их заводами, троллейбусами, неоновыми рекламами и рентгеновскими трубками, создающими помехи радиоприему, даже при питании от батарей, даже зимой, когда от ближайших гроз нас отделяют тысячи километров, мы слышим слабый шум и видим на экране телевизоров легкую рябь. Особенно мешает это при приеме дальних радиостанций. Эти шумы и помехи возникают внутри радиоприемников, главным образом в электронных лампах.

В борьбе за чувствительность радиоприемников ученые достигли очень больших результатов. Они близко подошли к пределу — идеальному приемнику, не вносящему в передачу своих собственных шумов. Правда, идеал есть идеал, он, как горизонт, удаляется по мере того, как к нему приближаются. Идеального приемника нет и никогда не будет. Но приблизиться к идеалу не только мечта, но и практическая задача ученых и инженеров.

Лучшие электронные лампы и специальные полупроводниковые параметрические усилители, работающие в диапазоне сантиметровых волн, имеют очень малые шумы. Ученые оценивают их сотнями градусов. Не удивляйтесь, для расчетов оказывается более удобным оценивать шумы в градусах, а не в электрических или акустических единицах. В тех же градусах, которыми мы измеряем температуру. Так, идеальный приемник не шумел бы вовсе и его условная шумовая температура была бы равна нулю градусов. Отдельные образцы современных приемников имеют шумовую температуру вблизи ста градусов. Но и это слишком много для радиоастрономов, которым необходимо принимать очень слабые сигналы. Они бы просто утонули в собственных шумах приемной аппаратуры. Квантовые парамагнитные усилители смогли скачком улучшить чувствительность приемников. Они имеют шумовую температуру, измеряемую лишь десятками градусов, причем большая часть шумов возникает даже не в самом усилителе, а в антенне и волноводах, соединяющих антенну с усилителем. Почти что идеал! Не дотягивают буквально на десятку.

Только такое большое увеличение чувствительности смогло обеспечить квантовым парамагнитным усилителям путевку в жизнь, несмотря на то, что их применение много сложнее, чем работа с электронными лампами или полупроводниковыми усилителями.

Особенно усложняет дело необходимость применения жидкого гелия. Гелий ведь сравнительно редкий газ. Он образуется при радиоактивном распаде природных радиоактивных элементов, и так как гелий легче воздуха, то, попав в атмосферу, он быстро поднимается вверх и в приземном слое воздуха его так мало, что добывать гелий из воздуха все равно, что переливать из пустого в порожнее.

34
{"b":"837636","o":1}