Литмир - Электронная Библиотека
Содержание  
A
A

Впрочем, название — дело вкуса. Советские ученые предпочитают говорить «оптический квантовый генератор», сокращая его для удобства в ОКГ. Мы привыкли ко всякого рода ломающим зубы сокращениям. Ученые группы Таунса предпочитают «оптический мазер». Может быть, потому, что автор слова «мазер» их шеф. Но в общем разноголосица не вносит путаницу только потому, что все знают, о чем идет речь, и воспринимают слова «мазер» и «лазер» не в первоначальном значении, а просто как название целого класса приборов.

ВОЗМОЖНО ЛИ ЭТО?

Красный луч Меймана, подобно бикфордову шнуру, воспламенил целый фейерверк. Горючее для него готовилось и собиралось годами. Если за двадцать лет до этого одинокий голос Фабриканта не был услышан, то теперь в десятках лабораторий работали новые квантовые приборы. Это и разнообразные молекулярные генераторы, и парамагнитные усилители, и атомнолучевые стандарты частоты. Уже существовали безукоризненно разработанные теории, были подробно изучены различные вещества. Сложенные костры ждали только искры. Мейману посчастливилось высечь эту искру.

Заводы искусственных камней, предназначенных для часовой и приборостроительной промышленности, быстро освоили выращивание крупных рубинов. Труднее оказалось добиться высокого оптического качества кристаллов, наладить точную обработку их торцов. Здесь требовалась по крайней мере в десять раз более точная обработка, чем при изготовлении лучших астрономических приборов.

Каждый знает, что такое десятая доля миллиметра. Это толщина лезвия безопасной бритвы. Впрочем, не все лезвия так тонки. Сотые доли миллиметра можно измерить только микрометром. Несмотря на свое название, этот прибор не может отсчитать микрона — тысячную долю миллиметра. Для этого квалифицированные слесари-лекальщики пользуются специальными, еще более точными приборами — индикаторами.

Оптики, для которых важны десятые доли микрона, ловят их при помощи специальных оптических приборов. А теперь от них требуют сотые доли микрона! Иначе луч оптического квантового генератора будет по мере удаления расходиться сильнее, чем это должно быть, а в некоторых случаях генератор совсем не заработает. Правда, такие невообразимые точности потребовались позднее, но они потребовались и были достигнуты.

В наш век, когда газеты ожесточенно воюют за каждого читателя, сенсации грозят превратиться в обыденность. Мир привык к сенсациямподенкам. Некоторые фирмы спешат за модой. Прилагательные «космический», «атомный» приносят кредит, поднимают цены акций.

Мейман не стремился к рекламе. Он опубликовал сообщение о своем открытии в виде небольшой заметки в скромном английском журнале. Правда, тридцатью двумя годами раньше индийский физик Раман, опередив Мандельштама, направил именно в этот журнал телеграмму об открытии комбинационного рассеяния света, впоследствии приведшую его к Нобелевской премии. Этот журнал известен тем, что очень быстро печатает такие короткие заметки. Поэтому ученые всего мира внимательно следят за его тонкими тетрадками, и они прочли заметку Меймана. И она взволновала их гораздо сильнее, чем тех читателей газет, которых репортеры стремились потрясти заголовками «Лучи смерти», «Разящий луч» и рассказами о том, как неосторожный молодой ученый временно ослеп, попав в луч лазера на расстоянии десяти миль.

Физиков такие заголовки не смущали. Они знали, что иные газеты привыкли делать из мухи слона. Но они понимали и то, что скромный маломощный прибор Меймана вовсе не муха, а птенец, который скоро станет огромной птицей. И поначалу было совсем не ясно, кем он обернется — жестоким хищником или благородным аистом.

Слишком свежо было воспоминание о том, что последовало за скромной заметкой Гана и Штрассмана о делении ядер урана.

Физики хорошо знали и то, чем отличается красный луч, выходящий из прибора Меймана, от красного света светофора или от кровавого сияния неоновых реклам.

Во всех существующих доселе источниках света — от костра первобытного человека и далеких звезд до привычной электрической лампочки или сверхъяркой лампы, вспыхивающей на летящем самолете или пылающей в огромном прожекторе, — всюду истинными источниками световых волн являются отдельные атомы или электроны, испускающие свои маленькие порции света совершенно независимо, по законам случая. В переводе на мир больших явлений это выглядит так, как если бы Москву освещали лампочками, вспыхивающими то в Лужниках, то на Пресне, то в Химках. Только миллионы одновременно сияющих ламп могут осветить город!

В приборе Меймана источниками света тоже были миллиарды миллиардов электронов, входящих в состав ионов хрома, рассеянных в толще рубинового стержня. Но все эти электроны испускали свет не независимо, не хаотически, не самопроизвольно. Они испускали его более согласованно, чем звучат скрипки в хорошем оркестре. Это было вынужденное испускание, при котором не только частота, но и фаза и направление излучения, исходящего от отдельных частиц, совпадают с огромной точностью.

Такое совпадение основных характеристик световых волн оптики называют когерентностью. Почти все умопомрачительные достижения оптических квантовых генераторов так или иначе связаны с когерентностью. С тем, что вынужденное излучение отдельных частиц в результате обратной связи оказывается жестко связанным и вся масса активного вещества генерирует как одно целое.

До появления прибора Меймана оптики почти всегда имели дело с некогерентным светом. Прибор Меймана впервые показал, что и в оптике слаженный коллектив приобретает качества и возможности, недоступные хаотическому сборищу индивидуальностей.

Физики уже имели дело с вынужденным испусканием электромагнитных волн в сантиметровом диапазоне радиоволн. Там оно привело к недостижимой, ранее стабильности генераторов, к предельной чувствительности приемников.

Теперь им было ясно, что вынужденное испускание в оптике дает гораздо больше, чем простое усиление света, о котором писал Фабрикант в своей диссертации. Вынужденное испускание в оптике открывает путь для небывалой концентрации энергии, для передачи энергии на огромные расстояния с очень малыми потерями, для создания новых систем связи… Впрочем, могли открыться возможности, о которых никто еще и не мечтал.

Вспомните известную легенду об Архимеде. В ней говорится о том, как он спас родные Сиракузы, поставив на их стенах сотни воинов с блестящими щитами и приказав им отбросить этими щитами солнечные зайчики на флагманский корабль врагов. Корабль тут же загорелся, а за ним и другие. Враг бежал.

Во многих легендах есть зерно истины. Сиракузы не были побеждены. Враги действительно сняли осаду и удалились восвояси. Может быть, осаждавших ослепили щиты сиракузцев или обескуражила их решимость. Возможно, у них иссякла вода или продовольствие. История об этом молчит. Но физики знают, что щиты сиракузцев не могли поджечь корабли. Если на каком-либо из них и вспыхнул пожар, то по иной причине.

Об этом можно прочитать в интересной и поучительной книге профессора Г. Г. Слюсарева. Она называется «О возможном и невозможном в оптике». Эта книга вышла всего несколько лет назад. Потом она была переиздана. Это прекрасная книга, она не только основывается на непоколебимом фундаменте науки, но и написана так, что каждый, даже очень далекий от физики, поймет, что же могут и чего не могут достичь оптика и светотехника.

Особенно интересно читать эту книгу сегодня. Годы придали ей то, о чем даже не помышлял автор. Листая ее страницы, мы видим, как наука переходит от невозможного к возможному. Ведь почти все то, о чем в ней пишется как о невозможном, действительно было невозможным до 1960 года. А теперь стало, по крайней мере в принципе, возможным!

Нет, законы оптики не изменились. Все, о чем Слюсарев пишет как о недостижимом, осталось недостижимым при помощи старых источников света. Но новые источники — оптические квантовые генераторы — уже сделали многое из этого реальным и обещают в будущем достичь и остального.

40
{"b":"837636","o":1}