Литмир - Электронная Библиотека
Содержание  
A
A

Работы Джавана получили дальнейшее развитие.

Уже действуют многочисленные газовые лазеры на смесях других газов.

Впрочем, и лазер на смеси гелия и неона может работать в других режимах, генерируя не только невидимые инфракрасные волны длиной в 1,15 микрона, но и инфракрасные волны других длин и видимый красный свет с длиной волны около 0,63 микрона.

Впоследствии оказалось возможным добиться генерации и в чистых газах, и не только под действием электрического разряда. Инверсия населенностей в некоторых газах может быть достигнута и при их освещении, то есть путем оптической накачки, как это предлагали Таунс и Шавлов.

При оптической накачке атомы газа независимо один от другого поглощают фотоны, хаотически вылетающие из яркой лампы. Но в процессе квантовой генерации все атомы испускают фотоны строго согласованно. Здесь происходит замечательный процесс преобразования хаоса в образцовый порядок. Процесс, еще теперь кажущийся чуть ли не противоестественным.

Газы постепенно открывали перед учеными новые и новые возможности. Выяснилось, что для квантового генератора пригодны не только газы, состоящие из нейтральных атомов, но и плазма — газ, состоящий преимущественно из ионов и свободных электронов. Ионные или, как их иногда называют, плазменные лазеры позволили продвинуться еще дальше в область ультрафиолетовых волн, значительно увеличить число спектральных линий, используемых в квантовых генераторах.

Вслед за ионами наступила очередь молекул. Обычный углекислый газ оказался превосходным активным веществом, при помощи которого удалось получить в непрерывном режиме мощность почти в 200 ватт на волне около 10,5 микрона.

Двести ватт — это мощность большого электрического паяльника. Представьте себе эту мощность сосредоточенной на острие иголки. Трудно предвидеть все технологические возможности, открываемые применением такого луча. Учтите еще, что волна в 10 микрон попадает как раз в «окно прозрачности» земной атмосферы. Этот невидимый инфракрасный свет наиболее слабо поглощается газами, составляющими воздух, сравнительно мало поглощается парами воды и не очень рассеивается каплями дождя. Чего же еще могут желать люди, работающие над системами оптической связи и другими применениями лазеров, связанными с прохождением их лучей через атмосферу!

Но и это не исчерпало возможностей, открываемых газами. Они помогли применить в квантовой электронике давно известное влияние света на химические реакции. Каждый знает о вредных проявлениях фотохимических реакций. Они вызывают выгорание многих красок, порчу резины, старение пластмасс. Есть, конечно, и полезные реакции такого типа. Без них невозможна жизнедеятельность большинства растений. Ведь только солнечные лучи приводят в действие химическую фабрику, скрытую в зеленых листьях.

Химики давно обнаружили, что под действием света распадаются не только плохие краски, но и молекулы некоторых газов. Физики сперва расчетами, а потом и опытами выяснили, как добиться того, чтобы осколки развалившихся молекул оказывались возбужденными. Конечно, этого недостаточно для создания лазера, но появляется надежда. Нужно найти подходящее вещество и поставить его в такие условия, при которых возбужденных осколков больше, чем невозбужденных. Знакомая ситуация: передатчиков должно быть больше, чем приемников!

Так, после тонких и сложных исследований появился новый тип газовых лазеров, основанных на применении фотодиссоциации молекул.

Перед газовыми лазерами открыты широкие перспективы. Уже сейчас они дают тысячи наиболее узких спектральных линий, расположенных в огромном диапазоне от ультрафиолетовых до субмиллиметровых волн. Они успешно соперничают с твердотельными лазерами по мощности и экономичности. Над их усовершенствованием работают в сотнях лабораторий.

ОБЕД ПО ПОЛУПРОВОДНИКАМ

Вернемся к середине сентября 1959 года, когда близ Нью-Йорка собралась первая Международная конференция по квантовой электронике. Там было всего около полутораста пионеров новой науки. Лазеры еще не работали, правда, они уже тревожили воображение, но повестку дня еще не очень перегружали. И тем не менее она была так насыщена, что конференция выплескивалась далеко за стены небольшого зала, в котором происходили заседания. Да и вся обстановка способствовала этому. Хай Вью — тихое местечко, где оазисом была гостиница Шаванга-Лодж, вокруг лес, поля, рядом бассейн. Стояла такая жара, что после заседаний ученые, сбросив костюмы и оставшись в шортах, охотно беседовали на свежем воздухе. Я видела фотографии, простые любительские фотографии. Вот Таунс в трусиках, размахивая полотенцем, во главе таких же несолидных личностей мчится купаться. Они так спешат, что фигуры размыты, как на картинах импрессионистов, пытавшихся передать движение. Вот между Басовым и Прохоровым улыбающийся, добродушный Бонаноми. Все с бокалами в руках. Бонаноми хитро улыбается. Оказывается, он, поднимая тост, сказал, что пьет за Басова и Прохорова — будущих нобелевских лауреатов! Через семь лет в поздравительной телеграмме Бонаноми вспоминает о своем пророчестве.

А вот Джаван и Басов буквально уткнулись друг в друга — дискуссия захлестнула их где-то по дороге. Басов критикует его расчет. Джаван нахохлился, он озабочен.

Вот Блумберхен, наклонившись, пишет что-то на песке. За ним внимательно следит Корниенко из Московского университета и еще кто-то, стоящий спиной к фотоаппарату.

Вся эта непосредственная и непринужденная обстановка в Шаванга-Лодже сделала возможным одно совершенно невозможное обсуждение.

Программа первой квантовой конференции была так перегружена, что самый неожиданный для организаторов конференции доклад не попал в программу. Лишь немногие из делегатов обратили внимание на объявление: «Желающие обсудить перспективы применения полупроводников в квантовой электронике могут сделать это во время обеда. Сообщение за общим столом сделает профессор Н. Г. Басов из института Лебедева в Москве».

Вряд ли кто-либо ожидал, что мест не хватит и придется просить официантов поставить дополнительные приборы. Собралось свыше тридцати человек, более четверти всех участников.

Басов рассказал о расчетах, начатых в 1957 году и выполненных им вместе с Б. М. Вулом и Ю. М. Поповым. Формулы показывали, что, пропустив через пластинку, вырезанную из подходящего полупроводника, мощный электрический разряд, можно добиться в ней генерации инфракрасных волн. Это открывало совершенно новый путь.

Так прошла не конференция, не заседание, даже не семинар, а обед по полупроводникам.

Полупроводниковый обед прошел настолько успешно, что Басов остался совсем голодным. В пылу дискуссии ему было не до еды.

Так случилось, что один из наиболее интересных вопросов даже не попал в официальный том трудов конференции.

Теперь, размышляя о странном невнимании к сообщению Басова, приходится объяснять это, пожалуй, тем, что, видно, не назрело время для полупроводниковых лазеров, а главное — трудной судьбой самих полупроводников, которым с таким трудом далось признание.

Издавна так повелось, что ученые применяли либо проводники, либо изоляторы. А полупроводники — «ни рыба ни мясо», были просто какими-то пасынками. Действительно, кому придет в голову применять плохие изоляторы, если можно использовать хорошие?

Полупроводниковые лазеры оказались трудным орешком, и первый прорыв в неосвоенный оптический диапазон произошел по другим направлениям.

Уже в 1960 году заработал рубиновый лазер, а вскоре и его газовый собрат. К марту следующего года, когда собралась вторая конференция по квантовой электронике, к ним присоединились еще несколько лазеров на кристаллах, стекле и различных газах. Темпы развития и достигнутые результаты были так велики, что конференция, которая теперь собралась в университетском городке Беркли в Калифорнии, прошла под знаком лазеров.

О каких только лазерах здесь не говорили! Но суть конференций такого рода не столько в подведении итогов, сколько в обсуждении новых идей. Здесь, пожалуй, наибольший резонанс встретил доклад Р. В. Хеллворса об управляемых импульсах люминесценции. Он проложил путь управлению свойствами резонатора, открыл возможность перехода от хаотической свободной генерации к генерации гигантских коротких импульсов света с мощностями, составляющими десятки миллионов киловатт.

46
{"b":"837636","o":1}