Литмир - Электронная Библиотека
Содержание  
A
A

Подобные процессы имел в виду Фабрикант, обсуждая вопрос о возможности наблюдения индуцированного излучения. Как теперь выяснилось, и другие ученые еще в тридцатых годах наблюдали, что в газовых разрядах населенности некоторых уровней инвертируются.

Но Джаван первым подошел к этому с позиций радиофизики. Он был хорошо знаком с аммиачным молекулярным генератором и хотел создать что-нибудь подобное на световых волнах. Джаван не только понял, что таким путем можно получить инверсию населенностей энергетических уровней неона, но и знал, что нужно, чтобы прибор загенерировал. Выбор Джавана был удачным потому, что тот уровень неона, который возбуждался при столкновении с возбужденным атомом гелия, входил в группу из четырех уровней, ниже которой, одна под другой, располагаются еще две группы. При переходе с возбужденного уровня на любой уровень верхней из этих групп должен излучаться фотон инфракрасного излучения с длиной волны около одного микрона. При дальнейшем переходе на один из уровней нижней группы излучаются фотоны красного света, хорошо знакомые по обычным неоновым рекламам.

Предварительные исследования показали Джавану, что он может действительно надеяться на то, что в его трубке возникнет инверсия населенностей энергетических уровней неона, то есть он, вероятно, получит активную среду. Вероятно, но не наверняка. Еще осенью 1959 года Джаван не был уверен, что его прибор будет работать. Мы знаем, что именно это было темой его бесед с Басовым.

Вернувшись в Москву, Басов со своим молодым сотрудником О. Н. Крохиным построили необычайно прозрачную теорию, из которой было видно, что Джаван избрал верный путь. При некоторых условиях его прибор должен был работать. Сейчас этот расчет Басова и Крохина вошел в учебники, но Джаван обошелся без него. Он полагался на свою интуицию и приближенные, но обнадеживающие оценки.

Получение активной среды — лишь одна часть задачи. Нужно обеспечить и обратную связь. Джаван поместил внутрь своей трубки два плоских зеркала. Расчеты показали ему, что лучшие серебряные зеркала недостаточно «зеркальны». Они отражают не больше 95 процентов падающего света, а вычисления требовали более 98 процентов. Иначе обратная связь оказалась бы недостаточной для возбуждения генерации. Прибор остался на бумаге.

Были изготовлены специальные зеркала, образованные более чем десятком перемежающихся слоев сульфида цинка и фторида магния. Каждый слой толщиной около половины микрона практически прозрачен. Все слои вместе тоже кажутся прозрачными. Они пропускают почти весь свет. Только волну длиной в 1,15 микрона они почти полностью отражают. Для этой волны отражающее действие всех слоев складывается, подобно толчкам от весел хорошо сработавшейся команды гребцов.

Человеческий глаз не видит инфракрасного излучения. Но для коротковолновой части этого диапазона существуют электронно-оптические преобразователи, превращающие инфракрасное излучение в видимое. Поместив такой преобразователь на оси своего прибора, Джаван увидел, как его экран осветился. Это значило, что из прибора выходит инфракрасное излучение. Постепенно увеличивая ток через прибор, Джаван наблюдал увеличение свечения. Потом вдруг на экране ярко засияло небольшое круглое пятно. Остальная часть экрана казалась совсем темной. Так впервые заработал газовый лазер.

В отличие от рубинового лазера Меймана газовый лазер Джавана работал непрерывно все время, пока был включен питающий его источник электроэнергии. Непрерывная работа объяснялась тем, что хаотическое тепловое движение вызывало быстрое перемешивание газа, и активных атомов было достаточно, чтобы генерация не прекращалась.

Большая однородность газа по сравнению с лучшими кристаллами рубина обеспечила существенное преимущество лазера Джавана перед лазером Меймана. Луч света, выходящий из газового лазера, был в сотни раз более узким, чем в случае рубинового лазера.

У газового лазера расхождение луча вызывается только двумя причинами — несовершенством зеркал (их отклонением от идеальной плоскости) и дифракцией, то есть неизбежным загибанием световых волн за край ограничивающего их отверстия. В случае рубинового и других твердотельных лазеров большое дополнительное расхождение луча вызывается неоднородностями среды, возникающими при изготовлении кристалла. Подобные неоднородности, конечно, много большие по величине, можно видеть в оконном стекле, где они иногда вызывают заметные искажения формы предметов, наблюдаемых через стекло.

Исследование свойств излучения, даваемого газовым лазером, подтвердили надежды Джавана. Действительно, спектр излучения газового лазера был очень похож на спектр молекулярного генератора. Он состоял из немногих очень узких спектральных линий. Присутствие нескольких линий вызвано тем, что в генераторе одновременно возбуждались различные типы колебаний, как это бывает в скрипичной струне. Смычок, как правило, одновременно возбуждает множество звуковых тонов, которые, налагаясь друг на друга, обеспечивают характерное звучание скрипки. При известном искусстве скрипач может добиться возбуждения чистого тона. Этого же удается достичь в газовом лазере. Для этого нужно ограничить ток, проходящий через газ, с тем чтоб возбуждение было небольшим, и поставить между зеркалами одну или несколько диафрагм. Диафрагмы будут действовать подобно сурдинке, которую иногда применяют скрипачи с целью подавить нежелательные колебания струны.

МОГИЛЬНАЯ ПЛИТА И НАУКА

Наука — это тоже в большой степени искусство, и от ученых требуется виртуозное владение своим инструментом. Джаван в своей области, несомненно, является виртуозом, и ему удалось заставить газовый лазер генерировать только один тип колебаний. При этом в его спектре остается одна очень узкая спектральная линия, настолько узкая, что она может соперничать со спектральной линией молекулярного генератора. Конечно, достичь этого было нелегко. Пришлось увеличить жесткость конструкции лазера и защитить его от всех внешних воздействий. Для этого эксперименты проводились в глубине заброшенного винного подвала, расположенного вблизи Эм-Ай-Ти, куда к тому времени перешел Джаван.

Первое, что бросалось в глаза входящему, была огромная, многотонная могильная плита, подвешенная к потолку. Джаван заказал ее, чтобы использовать в качестве рабочего стола. До чего же остроумно он поступил! Я вспоминаю, как после окончания института одной из первых моих работ было создание специального камертонного генератора. Обыкновенный камертон, с помощью которого музыканты настраивают свои инструменты, служил колебательным контуром, определяющим частоту моего лампового генератора. Я закрепила ножку камертона на своем лабораторном столе, присоединила его к схеме — и генератор ожил. Все шло хорошо, камертон монотонно звучал, но время от времени он начинал заикаться. Оказывается, ему передавалось сотрясение почвы от проходящих где-то далеко грузовиков! И еще: автоматический самописец, который я оставляла работать и ночью, говорил, что камертон капризничал рано утром. Я долго ломала голову — почему именно по утрам? Товарищи в шутку строили предположения о влиянии Венеры, утренней звезды, пятен на Солнце, на которые валят все непонятное.

Все оказалось гораздо прозаичнее — тетя Нюша, наша уборщица, сметала с камертона пыль!

Тогда я написала устрашающий плакат: «Не трогать! Смертельно!» А тетя Нюша продолжала вносить свой вклад в научное исследование. Не оставалось ничего другого, как застать ее врасплох.

— Тетя Нюша, что же вы со мной делаете?! Плакат читали?

— Ох, милая, я же неграмотная. Плакат видела. Только думала, что ты за звание борешься.

Итак, я тоже работала в подвале, но не додумалась обзавестись могильной плитой! Правда, мой начальник, наверно, упал бы в обморок от такого расхода, зато ни машины, ни тетя Нюша генератора бы не достигли.

Но вернемся к Джавану. В тепличной обстановке его лаборатории лазеры могли показать, на что они способны. И показали! При сравнении световых волн, испускаемых двумя одинаковыми лазерами, оказалось, что их частоты не изменяются больше чем на несколько колебаний в секунду.

45
{"b":"837636","o":1}