Литмир - Электронная Библиотека
Содержание  
A
A

Стала ясной и связь между химическими свойствами атомов и их спектрами. В химических реакциях и в образовании оптических спектров участвуют только самые внешние электроны атома.

Бор, естественно, начал с самого простого атома, атома водорода. Применив к нему свои постулаты, Бор увидел, что единственный электрон этого атома может вращаться по различным орбитам. Чем больше орбита, тем больше и энергия движения электрона. При переходе электрона с удаленной орбиты на более близкую избыточная энергия излучается в виде фотона вполне определенной частоты. Для того чтобы перейти с внутренней ор. биты на внешнюю, электрон должен получить добавочную энергию. Эту энергию он может получить, поглотив подходящий фотон из окружающего поля. Подходящий в том смысле, что энергия поглощенного фотона должна быть в точности равна той энергии, которая нужна электрону для перехода с орбиты на орбиту.

Если энергия фотона будет больше или меньше необходимой, фотон не будет поглощен. Не претендуя на точность, можно сказать, что, пытаясь поглотить такой нерезонансный фотон, электрон «не допрыгнет» до нужной орбиты или «перескочит» через нее и будет вынужден вернуться в исходное состояние, предоставив фотону лететь своим путем.

ЕЩЕ ОДНА ДРАМА

По мере развития квантовой теории физикам пришлось отказаться от наглядного представления орбит электронов в атомах. Но суть, заключающаяся в существовании определенного набора допустимых значений энергии, осталась. Теперь. мы говорим об этих значениях энергии, как об энергетических уровнях и о переходах между уровнями.

Энергетические уровни присущи не только электронам внутри атомов. Колебания атомов в молекулах и вращение молекул тоже могут происходить только с вполне определенными частотами, а следовательно, и энергиями.

Поглощение и излучение изменяют внутреннюю энергию атома или целого коллектива атомов подобно тому, как приход и расход влияют на сумму денег, лежащую в кассе.

Поглощение и излучение входят во все рассуждения вполне равноправно. Между тем в каждом конкретном случае один из этих процессов преобладает.

Это звучит парадоксально. Как же может преобладать один из равновероятных процессов?

Здесь имеется небольшая хитрость. Природа такова, что равноправность соблюдается лишь для отдельного атома. Обладая избыточной энергией, он отдает ее так же охотно, как приобретает, если у него этого избытка нет.

Если бы удалось создать газ, все атомы которого обладают избытком энергии, они должны были бы дружно излучать ее.

Но во всех случаях, с которыми имели дело люди, в газах всегда преобладают атомы, стремящиеся поглотить энергию, атомы-приемники.

Поэтому газы всегда поглощают свет и радиоволны.

Соотношение между числом атомов-приемников и атомов-передатчиков, стремящихся избавиться от избыточной энергии, управляется законом, открытым в прошлом веке Больцманом. Этот закон чрезвычайно универсален. Вот простой пример его действия.

Уже давно определено, что давление воздуха над поверхностью Земли зависит от высоты. Причина этого выяснилась, лишь когда Больцман догадался связать изменение давления с энергией, необходимой для преодоления земного тяготения. Ведь молекулы воздуха движутся с различными скоростями. Быстрые, обладающие большими запасами энергии, могут забраться выше. Но таких молекул мало. Подавляющее большинство из них принуждено почти все время проводить внизу. Конечно, сталкиваясь между собой, молекулы постоянно обмениваются своими запасами энергии, и поэтому каждая из них имеет шанс подняться на большую высоту. Но барометр реагирует не на состояние отдельной молекулы. Давление — это результат действия огромной массы молекул.

Распределение молекул по их энергии в поле тяжести — самая наглядная иллюстрация закона Больцмана. Он применим не только к молекулам, но и к любым коллективам из большого числа частиц, в том числе и к коллективам, подчиняющимся квантовым закономерностям.

Конечно, как большинство законов, закон распределения Больцмана применим не всегда. Он неприменим, например, если вещество подвергается нагреванию или охлаждению. Но стоит подождать, пока установится тепловое равновесие, и в соответствии с этим законом частиц с большой энергией будет меньше, чем таких же частиц с малой энергией.

Вопрос о взаимодействии электромагнитного поля с веществом, который и привел Планка к открытию принципа квантования, таил в себе одну, казалось, непреодолимую трудность. Трудность, неразрешимую не только в рамках классической физики, но и с привлечением боровской теории строения атома.

Тупик возникал при попытке понять взаимодействие электромагнитного поля с атомами, если частота поля совпадала с частотой спектральной линии атомов.

За дело — вскоре после первой мировой войны — взялся Эйнштейн. Со свойственным ему стремлением отдавать предпочтение глубокому физическому анализу, а не сложной математике, он начал с осмысливания опытных фактов.

Оптикам и до Эйнштейна было известно, что самопроизвольное излучение атомов не зависит от внешних условий, а определяется только свойствами атомов. Напротив, поглощение растет вместе с интенсивностью падающего света. Но никто до него не обратил внимания на то, что эти твердо установленные факты приходят в противоречие с законами термодинамики.

Это был решающий шаг. Второй требовал интуиции и решимости. Вскрыв корень трудностей, нужно было найти выход. Эйнштейн предположил, что в природе существует третий, еще неизвестный процесс, обеспечивающий выполнение законов термодинамики, в справедливости которых убеждал весь опыт человечества. Этот процесс должен был приводить к излучению света, причем оно должно расти при освещении атомов внешним источником.

Очень простые вычисления показали Эйнштейну, что его догадка верна. Оказалось, что внешнее резонансное поле заставляет атомы испускать свет, совершенно неотличимый от падающего света, причем тем сильнее, чем сильнее падающий свет.

Это был чисто теоретический вывод. Вынужденное излучение не поддавалось наблюдению потому, что его маскировало более сильное поглощение. И это не удивительно. Ведь в обычных условиях атомов-приемников всегда больше, чем атомов-передатчиков. А из вычислений Эйнштейна следовало, что действие каждого атома-приемника способно скомпенсировать действие одного атома-передатчика. Значит, в избытке всегда остаются атомы-приемники и их поглощающее действие должно преобладать.

Несмотря на то, что и после работы Эйнштейна никому не удалось наблюдать вынужденного излучения, оно время от времени привлекало внимание ученых. Сам Эйнштейн вместе с М. Эренфестом в 1923 году вернулись к удивительному свойству вынужденного излучения увеличиваться вместе с падающим светом. Заинтересовался им и один из создателей квантовой физики, П. Дирак. Он подробно излагает все это в своем замечательном учебнике квантовой механики, особенно подчеркивая, что фотоны, рождающиеся при вынужденном излучении, неотличимы от потока падающих фотонов. Они вливаются в этот поток и усиливают его.

В 1939 году молодой в то время Валентин Александрович Фабрикант в докторской диссертации, которую он — защищал перед ученым советом ФИАНа, посвятил специальный раздел вопросу о возможности наблюдения вынужденного излучения в лабораторных условиях. Он сказал, что это, по его мнению, вполне возможно, и даже указал, что для этого надо сделать. Достаточно добиться того, чтобы атомов, обладающих минимальной энергией, было меньше, а атомов с большей энергией стало больше, чем при равновесии.

Если равновесие будет нарушено так сильно, что атомов с максимальной энергией станет больше, чем атомов с меньшей энергией, утверждал он, то вместо поглощения света такая среда будет усиливать свет. Да, именно усиливать. Это следует из старой формулы Эйнштейна. Световая волна, попав в такую среду, встретит на своем пути больше атомов-передатчиков, способных испустить фотон, чем атомов-приемников, стремящихся его поглотить. Поэтому по мере продвижения волны в этой среде число фотонов будет возрастать, а энергия волны будет увеличиваться.

11
{"b":"837636","o":1}