Литмир - Электронная Библиотека
Содержание  
A
A

В глубоком докладе Н. Блумберхена и П. Першана старый вопрос о модуляции света нашел новое освещение, созвучное задачам лазерной эры.

Один доклад, посвященный лазерам, следовал за другим. Они заняли две трети программы. На их фоне отступили на второй план квантовые усилители и генераторы радиодиапазона.

И только один доклад на этой конференции был посвящен полупроводникам. Докладчиком был Басов. Он рассказал о трех новых методах, предложенных советскими учеными для приведения в активное состояние различных полупроводников, о различных вариантах одного из методов, разработанных им вместе с О. Н. Крохиным и Ю. М. Поповым.

Доклад, казалось, не встретил резонанса. И не удивительно. В область видимого и инфракрасного излучений уже были проложены широкие дороги. Уже многие десятки лабораторий изучали один кристалл за другим, перебирали всевозможные газовые смеси. В каждом номере физических журналов появлялись статьи о новых и новых лазерах. Кому же при этих условиях хотелось тратить силы на укрощение полупроводников, с которых лишь недавно и далеко не полностью было снято покрывало таинственности? Но полупроводники упорно стучались в двери нашего времени. И их удивительные свойства не могли не привлечь внимание физиков, а затем и инженеров. Теперь, несомненно, наибольшей известностью среди всех полупроводниковых приборов пользуются транзисторы — устройства, во многих случаях вытеснившие электронные лампы. Словом «транзистор» зачастую называют не только полупроводниковый прибор, служащий для усиления и генерации электрических колебаний, но и портативные радиоприемники или магнитофоны, в которых применяются транзисторы. Но специалистов по электронике такое словоупотребление коробит так же, как химиков шокирует применение слова «пластик» к полимерному плащу.

Создание транзистора и наиболее простого полупроводникового прибора — диода стало возможным после того, как физики научились управлять свойствами полупроводников, превращать его по желанию то в изолятор, то в проводник.

Любовь слепа. И я не удивилась, когда в лаборатории полупроводников мне сказали, что диэлектрики — это просто плохие полупроводники. Их электрическое сопротивление не поддается управлению, и поэтому им уготована скромная роль изоляторов. Металлы, говорил мне вполне серьезный ученый, тоже плохие полупроводники. Из них невозможно сделать ничего более сложного, чем электрические провода.

Иное дело полупроводник, продолжал он. Соединив два подходящих полупроводника или даже полупроводник и металл, мы получаем электрический вентиль. Электрический ток легко проходит через это соединение в одну сторону и встречает большое сопротивление в противоположном направлении. Немного усложнив эту конструкцию, можно сделать такой вентиль управляемым. Управляемым при помощи очень слабого электрического тока. Полупроводниковый прибор, при помощи которого слабый ток управляет сильным, и есть транзистор.

Сопротивление некоторых полупроводников, а также переходных слоев между ними сильно изменяется при освещении. Обнаружив это, ученые создали замечательные приемники и преобразователи света, превращающие свет в электрический ток.

Удивительные свойства полупроводников, победно входивших в одну область радиоэлектроники за другой, давно привлекли внимание Басова. Он вспоминает, как в столовой ФИАНа рядом с ним оказался молодой физик Ю. М. Попов. Дело было в 1956 году, вскоре после того, как Басов защитил свою докторскую диссертацию. Кстати, это была первая в мире докторская диссертация, посвященная квантовой электронике. Легко представить себе состояние легкости и душевного подъема, в котором он в то время находился. Попов спросил его о планах на будущее. И Басов рассказал о своих мыслях, еще весьма неопределенных. О возможностях, скрытых в полупроводниках. Они начали работать вместе. Так история полупроводниковых лазеров началась во время обеда. Между этим обедом и тем — в ресторане Шаванга-Лодж — были бесконечные беседы, консультации с одним из опытнейших специалистов в физике полупроводников Б. М. Вулом, а затем и расчеты. Работали и втроем, а больше врозь, собираясь лишь для обсуждения, взаимной проверки и критики. Так, пока на бумаге, родился первый метод создания полупроводникового лазера. Расчет показал, что мощный кратковременный импульс электрического тока должен привести полупроводник в активное состояние.

ТЕМП НАРАСТАЕТ

После возвращения Басова из заокеанской поездки, работа продолжалась все более энергично. Начались эксперименты. К теоретическим исследованиям подключился О. Н. Крохин. Попов и Крохин проявили себя в этой работе как нерасторжимое целое, хоть и трудно представить себе две столь несхожие индивидуальности. Попов внешне очень молод. Работая у Басова уже лет десять и став доктором физико-математических наук, он кажется беспокойным студентом. Он горяч, темпераментен, в пылу дискуссии, говорят, ему лучше не попадаться под руку. Крохин спокоен, сдержан. Хоть ему тридцать два, у него седая голова, он строен, элегантен, такими я почему-то представляю себе холодноватых англичан. Очень одарен, у него уже свыше шестидесяти научных работ. Сотрудники говорят, что по уровню он выше доктора, только защищаться ему некогда, или считает, что не все открыл.

Попова и Крохина много и охотно цитируют за границей, считают их незаурядными учеными. И они в большой степени вообще типичны для молодого поколения советских физиков: своей работоспособностью, напористостью, широтой интересов. Попов специализировался по люминесценции, но, увлекшись полупроводниками, круто и безболезненно изменил область работы, быстро став здесь одним из ведущих специалистов.

Когда Крохин пришел в лабораторию Басова после университета, он поразил всех своим знанием «минимума» Ландау — знал его от корки до корки. А «минимум» Ландау — это известные во всем мире толстенные тома курса физики, написанные Ландау и Лифшицем, за которые они получили Ленинскую премию. Теперь таких томов, кажется, девять! Эти тома, конечно, не входят в программу обучения студентов, это высший пилотаж, но наиболее одаренных, а их немало, они манят, как вершина Эвереста. И есть такие, которые восходят. Взошел и Крохин и оказался как нельзя более подготовленным к квантовой электронике.

Итак, Басов, Попов и Крохин сочли проблему полупроводниковых лазеров «проблемой номер один». Фронт исследований стал шире, работа пошла быстрее, и ко времени рождения первых лазеров — рубинового и гелий-неонового — советские ученые смогли предложить еще три способа привлечения полупроводников на службу квантовой электронике.

Оказалось, что и в этом случае можно воспользоваться трехуровневой схемой, с успехом применяемой и в парамагнитных усилителях и в лазерах на рубине или других люминесцентных кристаллах. При этом полупроводник переходит в активное состояние, и, если обеспечена достаточная обратная связь, в нем начнется генерация электромагнитных волн. Для накачки полупроводникового лазера очень выгодно применять свет лазеров других типов или излучение специальных полупроводниковых источников света.

Басовцы доказали, что полупроводники могут быть приведены в активное состояние и в результате бомбардировки быстрыми электронами. При этом должно возникать очень мощное излучение из малого объема полупроводника. Но, к сожалению, электронная бомбардировка приводит к выделению большого количества тепла и вредному нагреванию полупроводника. Поэтому, несмотря на интенсивное охлаждение, полупроводник может выдерживать бомбардировку быстрыми электронами только, если они подаются короткими импульсами.

Наконец, для создания полупроводникового лазера оказалось подходящим полупроводниковое устройство, мало отличающееся от одного из типов полупроводниковых диодов. Можно было даже предвидеть, что для его создания достаточно применить уже известные способы введения некоторых примесей в очень чистый полупроводник. Физики хорошо знали, что примесь, нанесенная на поверхность чистого полупроводника, при нагревании постепенно проникает в его толщу, изменяя свойства полупроводника.

47
{"b":"837636","o":1}