Литмир - Электронная Библиотека
Содержание  
A
A

Одним словом, Завойский поместил исследуемый кристалл в поле генератора радиоволн и расположил свой прибор между полюсами большого электромагнита. Изменяя ток в его обмотках, Завойский обнаружил, что при вполне определенной величине тока поглощение радиоволн сильно увеличивается. Это был парамагнитный резонанс.

После открытия Завойского парамагнитный резонанс стал одним из наиболее удобных и точных методов изучения свойств твердых тел и жидкостей. Он наблюдается и в некоторых газах. При таких наблюдениях все и по сей день используют метод Завойского. Частота генератора, дающего радиоволны, необходимые для исследования, остается постоянной, а резонансная частота исследуемого вещества изменяется при помощи регулировки силы тока, питающей электромагнит.

Это отступление в область истории, несомненно, вызвало законный вопрос. Все известные до тех пор квантовые приборы работали на газах или на пучках частиц. Конечно, подобрать подходящие широкие спектральные линии было необходимо. Но этого далеко не достаточно. Как же Блумберхен предлагал приводить кристаллы в активное состояние? Ведь без этого усиление невозможно, а в твердом теле нельзя отделить частицы, находящиеся на верхних энергетических уровнях, от частиц на нижних уровнях! Действительно, никакой метод сортировки здесь неприменим.

Правда, при исследованиях парамагнитного резонанса ядер, а впоследствии и электронного парамагнитного резонанса ученые добивались на короткое время инвертирования, переворачивания населенности энергетических уровней. Первыми, как мы уже знаем, это сделали Пэрсел и Паунд. Они проявили удивительную сноровку, намагничивая кристалл фтористого лития в сильном магнитном поле, а потом быстро перенося его в магнитное поле противоположного направления. Так они перехитрили неповоротливые частицы — парамагнитные ядра фтора и лития, слабо связанные с внешними электронными оболочками, объединяющими атомы в кристалл. При перенесении кристалла в поле противоположного направления ядра не успевают быстро повернуться вслед за полем, и нижние энергетические уровни на некоторое время становятся верхними и наоборот. Значит, если вначале кристалл был в тепловом равновесии, то есть нижний уровень был заселен сильнее верхнего, то при переносе в поле противоположного направления более населенным окажется верхний уровень. И ионам ничего не оставалось, как для возвращения в равновесие высветить неожиданно оказавшийся у них избыток энергии!

Пэрсел и Паунд действительно получали при такой процедуре кратковременное индуцированное излучение, сопровождающее возвращение кристалла в равновесное состояние. Их знаменитый эксперимент, произведенный в 1951 году, теперь можно без преувеличения считать одним из предвестников квантовой электроники.

Впоследствии были разработаны и другие методы, позволяющие на время получить инверсию населенностей в парамагнитных кристаллах. Они могут быть применены при разработке усилителей, работающих в импульсном режиме. Но Блумберхена это не устраивало, он хотел, чтобы его усилитель, как и обычные усилители с электронными лампами, работал непрерывно и так долго, как это понадобится. Он хотел добиться создания устойчивого, постоянно действующего прибора, а не сенсационного успеха.

Глубокие раздумья и теоретические оценки показали ему, что, оставаясь в пределах двух энергетических уровней и не вводя движущихся частей, эту задачу решить невозможно. Но, к счастью, реальные квантовые системы имеют много различных энергетических уровней. Блумберхен решил привлечь на помощь третий уровень. Его идея теперь кажется очень простой. Выберем третий уровень, отстоящий от двух интересующих нас «рабочих» уровней много дальше, чем они отстоят друг от друга. Безразлично, будет ли он сверху или снизу от них. Представим себе, что третий расположен сверху, и для простоты будем считать, что других посторонних энергетических уровней нет.

Тогда в состоянии термодинамического равновесия большинство частиц будут находиться на двух нижних уровнях, причем на самом нижнем их будет немного больше, чем на втором, расположенном слегка выше. На третьем — самом верхнем — уровне, которому Блумберхен подготовил особую роль, будет меньше всего частиц. Идея Блумберхена состояла в том, чтобы при помощи сильного вспомогательного электромагнитного поля, частота которого соответствует резонансу между самым нижним и самым верхним уровнем, заставить частицы совершать переходы между этими уровнями, перепрыгивать с самого низа на самый верх до тех пор, пока населенность этих уровней не станет одинаковой. Расчет показал, что для этого с нижнего уровня на верхний должно быть переброшено так много частиц, что на нижнем уровне их окажется меньше, чем на втором, расположенном близко над ним уровне. Это и было целью Блумберхена. Он хотел добиться того, чтобы частиц на втором уровне стало больше, чем на нижнем. Таким образом между двумя нижними уровнями будет достигнута инверсия населенностей. В квантовых генераторах с пучками молекул аммиака или атомов водорода это достигается сортировкой этих пучков при помощи постоянного электрического или магнитного поля. В результате такого воздействия вспомогательной радиоволны вещество станет активным по отношению к переходам между нижними энергетическими уровнями. Оно сможет усиливать электромагнитные волны, частота которых настроена в резонанс по отношению к переходам между этими двумя уровнями.

В статье, в которой Блумберхен предложил создать квантовый парамагнитный усилитель и обосновал возможность получения инверсии при помощи вспомогательного электромагнитного поля и системы трех уровней, он называет в качестве своих идейных предшественников Паунда и Оверхаузера, применявших аналогичную методику для увеличения чувствительности радиоспектроскопов. Но Блумберхен, повидимому, не знал, что годом раньше, в 1954 году, вышла короткая заметка Басова и Прохорова, в которой они предложили применять метод вспомогательного электромагнитного излучения и трех уровней специально для получения активного вещества в квантовых генераторах и усилителях.

Блумберхен не ограничился простым предложением метода. Он провел дополнительные расчеты, которые показали, что этот метод в диапазоне сверхвысоких частот в обычных условиях практически неприменим. Дело в том, что энергетические уровни, переходы между которыми соответствуют квантам электромагнитного поля этого диапазона частот, расположены слишком близко между собой. Это значит, что населенности их различаются очень и очень слабо и получаемая здесь инверсия будет крайне малой, совершенно недостаточной для работы усилителя. Этот вывод мог бы обескуражить любого. Но Блумберхен был опытным физиком и сумел найти в своих формулах путь к достижению цели.

Формулы показывали, что для создания усилителя придется вести работу при сверхнизких температурах в непосредственной близости абсолютного нуля. Блумберхен говорит о температуре в 2 градуса выше абсолютного нуля, указывая, что при этой температуре жидкий гелий становится сверхтекучим и поэтому в нем не образуются пузырьки, которые могли бы помешать работе усилителя (вот до каких деталей продумана эта статья!). Охлаждать рабочее вещество нужно было и для того, чтобы спектральные линии в рекомендуемых Блумберхеном кристаллах не были чрезмерно широкими.

В заключение своей замечательной работы Блумберхен предсказывает, что усилитель, построенный в соответствии с его расчетами, будет чрезвычайно чувствительным. Из возможных применений нового усилителя Блумберхен указывает радиоастрономию, в частности, наблюдение излучения межзвездного водорода на волне 21 сантиметр.

Прошел всего год, и парамагнитный усилитель, предложенный Блумберхеном, был сделан Сковилом и его сотрудниками. Они применили кристалл этил-сульфата лантана, содержащий 0,5 процента гадолиния, принадлежащего к группе редкоземельных элементов. Этот кристалл помещался внутри специального резонатора, резонировавшего одновременно и на рабочую и на вспомогательную частоты. Это был новый триумф квантовой электроники.

33
{"b":"837636","o":1}