Литмир - Электронная Библиотека
Содержание  
A
A

В свете сказанного выше закономерен вопрос: какие же стороны объективной реальности отражает концепция резонанса?

Необходимость учета нескольких резонансных структур связана прежде всего с тем, что не всегда возможно приписать химическую связь отдельным парам атомов, т. е. химическая связь может быть делокализована между тремя и большим числом атомов. Такой делокализации соответствует резонанс ковалентных структур. В то же время в соединениях с локализованными двухцентровыми связями последние могут быть (и обычно являются) поляризованными. Для отражения полярности связи следует учитывать ионно-ковалентный резонанс. В некоторых случаях без учета резонанса структур может получаться качественно неправильное описание электронной структуры молекулы, в частности, может нарушаться соответствие между симметрией молекулы и распределением в ней электронной плотности, примером чему может служить молекула бензола. Одноструктурное представление соединения, принятое в классической теории химического строения, является приближенным с точки зрения квантовохимической теории, описывающей строение химических соединений (в рамках метода ВС) несколькими резонансными структурами. Иными словами, понятие резонанса на уровне приближения, определяемом методом ВС, в концентрированном, предельно схематичном виде отражает всю эволюцию теории химического строения — от приписывания каждому индивидуальному соединению определенной классической структурной формулы до учета делокализации электронов в квантовой теории. Тем самым в принципиальном отношении появление концепции резонанса исторически явилось завершением круга идей, лежащих в основе метода ВС.

Основные черты развития теории химической связи в рамках метода МО

Выше мы рассмотрели процесс становления квантовомехаческой теории ковалентной химической связи в рамках метода ВС. Одновременной в значительной степени независимо в теоретической химии возник другой способ описания электронной структуры молекул — метод МО. Исходным пунктом его развития явилось изучение эмпирических закономерностей в области молекулярной спектроскопии. Это, в свою очередь, привело к тому, что в формирование квантовомеханической теории ковалентной связи методы ВС и МО внесли различный вклад. Как будет показано далее, сама постановка задачи в теории МО не предполагала поначалу изучение природы химической связи. Каждый из указанных методов описывал определенные аспекты строения молекул, давая о нем комплементарную информацию. Сравнительный анализ начальных этапов эволюции обоих подходов к молекулярной проблеме приводит к выводу, что такое развитие квантовой химии обусловлено не только возможностью различного математического представления N- электрон ной волновой функции молекулы, но и двумя типами исследовательской практики при изучении химических соединений.

В основе химического изучения лежит важнейшая особенность его объекта — существование рядов или серий веществ, содержащих тождественные части (ряды гомологов, соединения с различными заместителями и т. п.). При этом наряду с использованием фундаментальных физических принципов широкое распространение в химии получило сопоставление свойств в указанных рядах соединений, проводимое эмпирическим или полуэмпирическим путем и опирающееся на представление о молекуле как системе взаимодействующих атомов. Физический же подход предполагает в первую очередь сопоставление различных спектроскопических состояний одного и того же вещества.

Отмеченные различия особенно четко проявились в первые годы существования квантовой химии (1927-1929 гг.). Однако уже в 1929 г. благодаря работам Герцберга и Леннард-Джонса намечается перелом в развитии метода МО — начинает формироваться молекулярно-орбитальная трактовка понятий кратности связи, валентности и т. п. И наконец, важнейшим событием тех лет явилось создание Хартри и Фоком (1928-1930 гг.) метода самосогласованного поля. Именно в таком порядке мы будем излагать раннюю историю метода МО.

Квантовомеханичеекая интерпретация молекулярных спектров и ее роль в создании метода молекулярных орбиталей

Основные положения квантовомеханической теории молекулярных спектров были сформулированы в серии статей Хунда, опубликованных в 1927-1930 гг. под общим заголовком "К интерпретации молекулярных спектров" [54]. В них были заложены основы метода молекулярных орбиталей — доминирующего метода расчета электронной структуры молекул в современной квантовой химии. В первой из статей указанной серии — [54, I], преследуя цель качественного объяснения природы молекулярных спектров, Хунд рассмотрел простейшую модель молекулы — квантовомеханическую систему с одной степенью свободы, потенциальная энергия которой характеризуется существованием нескольких минимумов. Существенным является то, что при этом он отметил возможность установить соответствие между стационарными состояниями рассматриваемой модельной системы и состояниями, которые отвечают бесконечному удалению потенциальных минимумов друг от друга. Тем самым была установлена адиабатическая взаимосвязь между состояниями двух разделенных атомов или ионов, состояниями двухатомной молекулы и состояниями атома, образованного путем мысленного сближения атомов вплоть до объединения их ядер. Ранее аналогичные идеи высказывали некоторые авторы (например, Кондон), но они были сформулированы недостаточно четко. Практическая ценность отмеченных Хундом корреляций состояла в том, что они позволили во многих случаях получить качественно правильную схему взаимного расположения энергетических термов двухатомной молекулы.

Работа Хунда [54, II] была посвящена исследованию характерных свойств полосатых спектров двухатомных молекул (как гомо-, так и гетеронуклеарных). В дальнейшем наряду с электронной он рассматривал также колебательную и вращательную структуры этих спектров [54, III-V]. Мы остановимся только на первых двух работах, наиболее повлиявших на процесс создания молекулярно-орбитальной теории молекул.

Согласно Хунду, электронную систему двухатомной молекулы можно представить как построенную путем последовательного добавления в поле двух атомных ядер по два электрона. При этом возникает вопрос: какое квантовое состояние займет каждый из добавляемых электронов, т. е. какова последовательность одноэлектронных квантовых состояний? Очевидно, что она зависит как от зарядов атомных ядер, так и от расстояния между ними. Хунд рассматривает два случая — малые и большие межъядерные расстояния R.

Если R мало по сравнению с эффективными размерами электронных оболочек атомов, то молекулярные термы должны быть подобны термам атомным[23]. При этом атомному Р-терму будут соответствовать два близких по энергии

Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - img_190.jpeg
атомному D-терму — три молекулярных:
Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - img_191.jpeg

Одноэлектронные состояния образуют при малых R ту же последовательность, что и в атоме: 1s, 2s, 2p, 3s, 3р, 4s, 3d,..., если система электронейтральна или ее заряд мал; и 1s, 2s, 2p, 3s, 3р, 3d, 4s,..., если суммарный заряд ядер существенно больше числа электронов.

Простейшим случаем, рассмотренным Хундом, является атом, содержащий замкнутые электронные оболочки и один р-электрон в незамкнутой оболочке. Такой атом находится в состоянии 2Р. Мысленное расщепление ядра приводит к понижению сферической симметрии до аксиальной и, следовательно, к расщеплению 2Р-терма на

Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - img_192.jpeg
при допущении, что 2∏-терм лежит выше терма 2∑.

При наличии сверхзамкнутой оболочки лишь одного d-электрона 2D-терм объединенного атома порождает молекулярные 2∏-,

Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - img_193.jpeg
- и 2Δ-термы, приведенные здесь в порядке возрастания их энергии. При наличии пяти эквивалентных р-электронов соответствующий 2Р-терм порождает
Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - img_194.jpeg
-состояния, причем последнее имеет большую энергию. При добавлении еще одного электрона из двух указанных выше термов, 2∏ и 2∑, возникает терм
Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - img_195.jpeg

вернуться

23

Связь молекулярных термов с атомными была рассмотрена в 1928 г. также Вигнером, но в более общем виде с помощью теории групп.

21
{"b":"820476","o":1}