Литмир - Электронная Библиотека
Содержание  
A
A

Если одна и та же молекула может быть катионом в одном электролите, анионом - в другом, а также входить в состав сложных тел, которые не являются электролитами, то мы должны предположить, что эта молекула получает положительный электрический заряд, когда она действует как катион, получает отрицательный заряд, когда она действует как анион, и что она совсем не имеет заряда, когда она не входит в состав электролита.

Например, йод действует как анион в химических соединениях йода с металлами и в йодисто-водородной кислоте, но, по имеющимся сведениям, действует как катион в соединении с бромом.

Эта теория молекулярных зарядов может рассматриваться как некоторый метод, помогающий нам запомнить множество фактов, относящихся к электролизу. Однако кажется крайне невероятным, что мы сохраним в какой-либо форме теорию молекулярных зарядов после того, как придём к пониманию истинной природы электролиза, ибо тогда у нас будут надёжные основания, на которых можно построить верную теорию электрических токов и тем самым избавиться от этих предварительных теорий.

261. Одним из самых важных шагов в нашем познании электролиза явилось обнаружение вторичных химических процессов, возникающих при превращении ионов на электродах.

Во многих случаях вещества, которые обнаруживаются на электродах, не являются настоящими ионами электролиза, а представляют собой результат воздействия этих ионов на электролит.

Так, при электролизе раствора сульфата натрия током, который проходит также и через разбавленную серную кислоту, на анодах выделяются равные количества кислорода как в сульфате натрия, так и в разбавленной кислоте, а на катодах - равные количества водорода.

Но если проводить электролиз в подходящих сосудах, таких, как 𝑈-образные трубки или же сосуды с пористой перегородкой, так чтобы можно было отдельно исследовать вещество, окружающее каждый электрод, то выясняется, что в растворе сульфата натрия на аноде одновременно с одним эквивалентом кислорода выделяется один эквивалент серной кислоты, а на катоде наряду с одним эквивалентом водорода выделяется один эквивалент щёлочи.

На первый взгляд может показаться, что в соответствии со старой теорией строения солей сульфат натрия при электролизе разлагается на свои составные части - серную кислоту и щёлочь, и в то же время вода из раствора разлагается на составляющие её кислород и водород. Но такое объяснение было бы основано на допущении, что тот же самый ток, который, проходя через раствор серной кислоты, электролитически разлагает один эквивалент воды, выделил бы при прохождении через раствор сульфата натрия один эквивалент соли и одновременно один эквивалент воды, что было бы в противоречии с законом электрохимических эквивалентов.

Но если мы предположим, что сульфат натрия состоит не из компонент SO3 и Na2O а из SO4 и Na2, т. е. не из серной кислоты и щёлочи, а из кислотного остатка и натрия, тогда при электролизе кислотный остаток движется к аноду и там освобождается, но поскольку кислотный остаток не может существовать в свободном состоянии, он разбивается на серную кислоту и кислород в равном числе эквивалентов. В то же время натрий освобождается на катоде и здесь разлагает воду раствора, образуя один эквивалент щёлочи и один - водорода.

Газы, которые собираются у электродов в разбавленной серной кислоте, представляют собой составные части воды, а именно один объём кислорода и два объёма водорода. У анода также возрастает количество серной кислоты, но оно не равно одному эквиваленту.

Неясно, является чистая вода электролитом или нет. Чем лучше очищена вода, тем больше оказывается её сопротивление электролитическому прохождению тока. Малейших следов инородного вещества оказывается достаточно, чтобы намного уменьшить электрическое сопротивление воды. Электрическое сопротивление воды, измеренное различными исследователями, имеет настолько различающиеся значения, что мы не можем рассматривать эту величину как определённую. Чем чище вода, тем больше её сопротивление, и, если бы мы могли получить действительно чистую воду, весьма сомнительно, что она вообще была бы проводником.

Пока вода рассматривалась как электролит, а она действительно считалась построенной по типу электролитов, имелись веские причины предполагать, что вода представляет собой бинарное соединение и что два объёма водорода химически эквивалентны одному объёму кислорода. Однако, если мы допустим, что вода не является электролитом, мы свободны считать, что равные объёмы кислорода и водорода химически эквивалентны.

Динамическая теория газов приводит к предположению, что в идеальных газах равные объёмы всегда содержат равное число молекул и что главная часть удельной теплоёмкости, а именно та, которая обусловлена движением молекул вследствие теплового возбуждения, одинакова для равного числа молекул любого газа. Поэтому нам приходится предпочесть такую химическую систему, в которой равные объёмы кислорода и водорода рассматриваются как эквивалентные, а вода считается смесью двух эквивалентов водорода и одного эквивалента кислорода, и поэтому, вероятно, вода не поддаётся прямому электролизу.

Электролиз полностью устанавливает тесную связь между электрическими явлениями и явлениями химического соединения. Однако не каждое химическое соединение является электролитом, и это обстоятельство показывает, что химическая связь представляет собой явление более высокого порядка сложности, чем любое чисто электрическое явление. Так, соединения металлов друг с другом, хотя и являются хорошими проводниками, а входящие в эти соединения компоненты занимают разные места на шкале контактной электродвижущей силы, они даже в жидком виде не разлагаются электрическим током. Большая часть соединений, составленных из таких веществ, которые действуют как анионы, не являются проводниками и потому не является электролитами. Кроме того, имеется много составных веществ, содержащих те же компоненты, что и электролиты, но не в тех же пропорциях, и эти вещества также являются непроводниками а следовательно, и неэлектролитами.

О сохранении энергии в электролизе

262. Рассмотрим произвольную вольтову цепь, составленную частично из батареи, частично - из провода и частично - из электролитической ячейки.

При прохождении единицы электричества через любое сечение цепи электролизу подвергается один электрохимический эквивалент каждого из веществ как в батарее, так и в электролитической ячейке.

Количество механической энергии, эквивалентное любому данному химическому процессу, можно определить, обратив в тепло всю энергию, выделившуюся в этом процессе, а затем выразить тепло в динамической мере, умножив количество единиц теплоты на Джоулев механический эквивалент тепла.

Там, где этот прямой метод неприменим, если мы можем оценить количества теплоты, выделенные веществами, взятыми одно в состоянии, предшествующем процессу, а другое - в состоянии после процесса, при переходе этих веществ в окончательное состояние, одинаковое в обоих случаях, то тепловой эквивалент этого процесса будет равен разности этих двух количеств теплоты.

В случае, когда химическое действие поддерживает ток в вольтовой цепи, Джоуль показал, что тепло, выделяемое в вольтовом элементе, меньше, чем то тепло, которое выделяется при химическом процессе, идущем внутри этого элемента. Избыток тепла выделяется в проводах или, если в цепи имеется электромагнитная машина, часть тепла может расходоваться на совершаемую этой машиной механическую работу.

Если, например, электроды вольтова элемента в одном случае соединены толстой и короткой проволокой, а в другом случае - тонкой и длинной, то в первом случае тепло, которое выделяется внутри элемента на каждый гран растворённого цинка оказывается больше, чем во втором случае, но тепло, выделенное в проволоке, оказывается больше во втором случае, чем в первом. Суммарное тепло, выделенное в элементе и в проволоке на каждый гран растворённого цинка, оказывается одним и тем же в обоих случаях. Это было установлено Джоулем в прямом эксперименте.

133
{"b":"603607","o":1}