Литература
1. Булдаков Л.А., Калистратова В.С. Радиоактивное излучение и здоровье. – М.: Информ-Атом, 2003. – 165 с.
2. Ильин Л.А., Кириллов В.Ф., Коренков Ю.П. Радиационная гигиена: Учебник. – М.: Медицина, 1999. – 384 с.
3. Публикация 103 МКРЗ: Рекомендации МКРЗ от 2007 г. «Обеспечение радиационной защиты профессионалов и населения от воздействия источников ионизирующего излучения». – Пер. с англ. – Изд. ФМБЦ им. А.И. Бурназяна.− М: Изд-во ООО ПКФ «Алана», 2009. – 344с.
4. Комментарий к Нормам радиационной безопасности НРБ-99 и Основным санитарным правилам обеспечения радиационной безопасности ОСПОРБ-99 / Под ред. Академика Г.Г. Онищенко. – М.: Минздрав России, 2005. – 126 с.
5. З. Яворовски. Жертвы Чернобыля: реалистичная оценка медицинских последствий чернобыльской аварии. – Медицинская радиология и радиационная безопасность, 1991, № 1. – С. 19–30.
6. Крещенко Е. Радиационное закаливание. – Химия и жизнь, 1997, № 7. – С. 12–16.
7. Булдаков Л.А., Калистратова В.С. Радиационное воздействие на организм – положительные эффекты. − М.: Информ-Атом, 2005.− 246 с.
8. Глазко В.И., Глазко Т.Т. Отбор на дурака. – Химия и жизнь, 2010, № 5. – С. 37–39.
9. Рекомендации-2003 Европейского Комитета по радиационному риску (ЕКРР-2003). Выявление последствий для здоровья облучения ионизирующей радиацией в малых дозах для целей радиационной защиты.− Брюссель, 2003; Москва, 2004. – 220 с.
10. Яблоков А.В. Миф о безопасности малых доз радиации: атомная мифология. – М.: Центр экологической политики России, ООО «Проект-Ф», 2002. – 145 с.
11. Гуськова А.К. Чернобыль и здоровье. Конец первого десятилетия. – Энергия, 1996, № 5. – С. 16–19.
12. Лебедев О. Облученный! Камо грядеши? – Изобретатель – рационализатор, 1993, № 10. – С. 16–17.
13. Радиация: Дозы, эффекты, риск / Перевод с английского. – М.: Мир, 1988. – 79 с.
14. Бурлакова Е.Б. и др. Действие малой дозы ионизирующего излучения и химических загрязнений на биоту. Программа «Оценка сочетанного действия радионуклидных и химических загрязнений». – Атомная энергия, 1998, том 85, № 6. – С. 457–462.
15. Василенко И.Я., Василенко О.И. Человек и малые дозы радиации. – Энергия, 2000, № 9. – С. 44–51.
16. Линдер Л. Чернобыль сегодня в сравнении с другими катастрофами. – Атомная техника за рубежом, 2000, № 11. – С. 27–30.
Миф одиннадцатый: российские нормы радиационной безопасности – самые мягкие в мире
Что такое нормы, когда речь идёт о радиации? Это такие дозы облучения, которые официально считаются безопасными. Многие полагают российские нормы недостаточно жёсткими, как говорится, «резиновыми». Таки нет! С чем у нас в порядке, так это с нормами радиационного облучения. Они полностью соответствуют международным [1, 2]. И тоже регулярно пересматриваются. Взгляните, как это происходило – на примере норм для персонала, работающего с источниками излучения (рис. 11.1). С 1925 года нормы ужесточились в 78 раз!
Рис. 11.1 Хронология изменения предела годовой дозы облучения персонала группы А (графическая обработка данных [3])
В 1912 году, когда никаких норм и в помине не было, французский учёный Жолио Кюри оценивал опасность на глазок. Подержав кусочек радия (самый популярный в то время радионуклид) в руке, он ждал: будет ожог или нет? И делал заключение: эритемная (то есть дающая стойкое покраснение и последующее коричневое окрашивание) доза на кожу не должна превышать 10 рентген в день. Лишь позднее, когда узнали об отдалённых последствиях облучения, стали вводить научно обоснованные ограничения. Со временем об опасности радиации узнавали всё больше, технологии работы с источниками излучения совершенствовались – и нормы периодически ужесточали.
Сегодня пределом дозы для профессионалов (атомщиков, медицинских работников и всех прочих, за исключением космонавтов) считается 20 мЗв/год. Правда, такая доза облучения допускается в среднем за любые последовательные 5 лет, а в течение одного года можно получать и до 50 мЗв.
А для нас с вами, для населения, установлены куда более жёсткие нормы. Так называемое техногенное облучение, например, от расположенного в городе атомного предприятия, ограничивается величиной 1 мЗв/год. Это мало, ниже дозы, реально получаемой за счёт природного фона (2 мЗв), о котором побеседуем чуть позже.
Отдельно ограничивают медицинское облучение. Для массовых рентгенорадиологических обследований практически здоровых лиц эффективная доза не должна превышать 1 мЗв/год.
Другое дело, если медицинская процедура, связанная с облучением, позволяет установить диагноз либо вылечить пациента. В этом случае доза не ограничивается каким-то пределом. Но должен соблюдаться так называемый принцип обоснования: польза от медицинской процедуры должна превышать возможный радиационный ущерб для здоровья [2].
Наглядно нормативы облучения показаны на рис. 11.2.
Рис. 11.2 Нормативы облучения
Поскольку их значения отличаются в сотни раз, ось ординат построена в логарифмическом масштабе: равные отрезки шкалы соответствуют десятикратному увеличению.
А что насчёт природного облучения? Ограничивают его или нет? Да, но не всякое. Возьмём космическое излучение у поверхности Земли. Можем ли мы повлиять на получаемую дозу? Нет. А ещё есть такой природный радионуклид – калий-40. Этот изотоп, как мизерная примесь к стабильному калию-39, поступает в организм с водой и пищей. Способны мы повлиять на дозу облучения? Тоже нет. Логично, что эти виды природного облучения не регулируются.
Другое дело – радиоактивный радон в помещениях. Напрямую дозу внутреннего облучения за счёт вдыхания радона определить сложно, и потому ограничивают не дозу, а объёмную активность радона в воздухе помещений. Причём российские требования предусматривают не одно, а два предельных значения объёмной активности. При проектировании новых зданий – 100 Бк/м3, а в уже эксплуатируемых зданиях – 200 Бк/м3, поскольку множество старых помещений не укладывается в первую норму.
Кстати, в западных странах нормы по радону либо сопоставимы с нашими, либо мягче. В настоящее время в странах Европейского Союза экспертами по радиационной защите рекомендованы нормы концентрации радона в помещениях вдвое выше, чем у нас: 200 Бк/м3 – для новых жилых зданий и 400 Бк/м3 – для старых. А в Финляндии, где очень много радона в старых помещениях, нормативы ещё либеральнее: 200 Бк/м3 в новых домах и до 800 Бк/м3 – в эксплуатируемых [4].
Но мы привыкли оценивать опасность радиации по значению дозы. Как же связать концентрацию радона (Бк/м3) с дозой (мЗв/год)? Понятно, что получаемые дозы зависят от времени пребывания людей в помещениях. Исходя из этого для жилых помещений, где люди проводят 80 % времени, среднегодовая активность радона и годовая эффективная доза соотносятся так:
100 Бк/м3 → 1,5 мЗв/год.
Соответственно,
200 Бк/м3 → 3 мЗв/год [5].
Может возникнуть вопрос: а почему санитарная норма на радоновое облучение (3 мЗв/год) в три раза мягче, чем для техногенного облучения (1 мЗв/год)? Может, радон не так опасен, как выбросы атомных станций? Причина в другом: снизить радиационное воздействие вездесущего радона куда сложнее, чем облучение от атомных предприятий. А норма должна быть выполнимой, иначе она теряет смысл. Впрочем, радиоактивному радону мы посвятим целых две главы (мифы № 13 и № 14).
Очень хитро нормируется суммарное природное облучение. С одной стороны, ограничивать эффективную дозу для населения не имеет смысла: мы не в состоянии повлиять ни на внешний гамма-фон, ни на содержание радиоактивного калия-40 в организме. А с другой стороны, суммарное воздействие природной радиации может достигать опасных значений. Как быть? Вместо жёстких норм введены уровни облучения, которые позволяют оценить степень радиационной безопасности населения [6, 7]. В зависимости от значения эффективных доз облучения населения от всех природных источников (включая радон) установлены три уровня: