Литмир - Электронная Библиотека
Содержание  
A
A

Таким образом, легкий окислительный стресс, вызываемый зеленым чаем и физическими упражнениями, можно рассматривать как благотворное воздействие, аналогичное вакцинации. Бросив организму небольшой вызов, мы можем вызвать ответную реакцию, благоприятную в долгосрочной перспективе. Концепция, согласно которой низкие уровни повреждающего воздействия могут стимулировать защитные механизмы – «то, что не убивает нас, делает нас сильнее», – известна как гормезис[1655] (см. с. 562).

Прием антиоксидантов, таких как витамин С и витамин Е, может блокировать активность антиоксидантных ферментов, вызванную физической нагрузкой, и тем самым снижать полезное действие тренировок; употребление богатых антиоксидантами продуктов питания – лучший выбор[1656]. В то время как добавки витамина С, по-видимому, снижают физическую выносливость[1657], фрукты[1658] и овощи[1659] обладают эргогенными свойствами, повышая работоспособность без ущерба для защитной адаптационной реакции[1660]. Более того, фрукты и овощи могут даже усиливать пользу от тренировок. Было показано, что черная смородина[1661] и лимонная вербена[1662] – богатый антиоксидантами травяной чай – защищают от окислительного стресса, вызванного физической нагрузкой, и в то же время улучшают адаптацию к нагрузке.

Учитывая эффект гормезиса, возникающий в результате мягких прооксидантных нагрузок, таких как зеленый чай и физическая активность, необходимо слишком упрощенное представление: «антиоксиданты – хорошо, свободные радикалы – плохо»[1663] пересмотреть[1664]. Пожалуй, нигде это не проявляется так ярко, как в случае с брокколи.

Капустный переключатель

Пищевые антиоксиданты, которые мы получаем из растений, представляют собой лишь вторую линию защиты от свободных радикалов[1665]. На первом рубеже стоят наши собственные антиоксидантные ферменты. Человеческий организм естественным образом производит 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 свободных радикалов в час[1666]. Мы вырабатываем такие ферменты, как каталаза, – самый быстрый фермент в нашем организме, способный ежесекундно превращать буквально миллионы молекул перекиси водорода в воду и кислород[1667]. (Помните, как шипит перекись водорода, когда вы льете ее на рану? Это пузырьки кислорода, образуемые ферментом каталазой.) Можно ли как-то усилить эту первую линию антиоксидантной защиты?

В 1980-х годах ученые впервые обнаружили специфическую генетическую последовательность в промоторных областях десятков[1668], а затем и сотен цитопротекторных (защищающих клетки) генов[1669]. Были выявлены промотирующие гены, кодирующие антиоксидантные ферменты, которые гасят свободные радикалы напрямую (каталаза)[1670], ферменты, которые производят антиоксиданты (глутатион)[1671] и даже гены ферментов восстановления ДНК[1672] и ферментов детоксикации в нашей печени[1673]. Эти элементы антиоксидантного ответа могут активировать всю нашу глобальную систему антиоксидантной защиты одновременно.

В 1990-х годах был открыт триггер – Nrf2, белок, плавающий в цитоплазме клетки и обычно связанный с белком-супрессором[1674]. Но когда этот белок-супрессор окисляется, он высвобождает Nrf2, который затем способен проникать в ядро клетки, связываться с элементами антиоксидантного ответа и активировать мощную батарею антиоксидантных защитных механизмов[1675]. Весь процесс может быть завершен в течение 15 минут[1676]. Nrf2 считается «главным регулятором реакции на экологический стресс»[1677] и экспрессируется повсеместно во всех клетках[1678] – он только и ждет, когда его освободят, чтобы нажать тревожную кнопку и активировать клеточную защиту.

Nrf2 также называют «хранителем здоровья и сторожем видового долголетия»[1679]. Усиление Nrf2-сигнализации приводит к значительному увеличению продолжительности жизни у C. elegans[1680]и плодовых мушек[1681] и коррелирует с максимальным потенциалом продолжительности жизни у десяти видов грызунов[1682]. Например, у долгоживущих голых землекопов ген Nrf2 экспрессируется в 6 раз больше, чем у мышей[1683], и это сочетается с более низкой экспрессией белков-супрессоров[1684]. Это может объяснить не только то, почему они живут в 8 раз дольше[1685], но и то, что для уничтожения одного и того же процента клеток кожи голых землекопов требуется в 100 раз большая концентрация токсинов – тяжелых металлов и химиотерапевтических препаратов, – чем у мышей[1686]. Это маленькие голые машины для детоксикации.

К сожалению, с возрастом уровень Nrf2[1687] и его сигнальная активность снижаются[1688]. Хотя тридцать минут езды на велосипеде могут повысить их уровень[1689], но самым мощным природным индуктором Nrf2 на планете может быть сульфорафан[1690] – соединение, которое образуется, когда мы разжевываем крестоцветные овощи: брокколи, белокочанную капусту, коллард и цветную капусту. Сульфорафан, как и активные компоненты зеленого чая и куркумы, освобождает Nrf2, окисляя его белок-супрессор, что омолаживает пожилых мышей[1691]. Те из них, кого кормили сульфорафаном, имели более высокую силу хвата по сравнению с молодыми и так же хорошо двигались на беговой дорожке[1692]. Активация Nrf2 привела к уменьшению повреждений ДНК и потери мышечной массы, а также к улучшению работы сердца и продолжительности жизни.

А что насчет нас? Сульфорафан также может восстанавливать активность Nrf2 в наших стареющих тканях[1693], вот почему сульфорафан способен задерживать старение стволовых клеток человека[1694]. Всего одно соцветие брокколи в день может значительно уменьшить повреждение ДНК сигаретным дымом[1695], а две ежедневные чашки брюссельской капусты способны минимизировать повреждение ДНК одним из видов канцерогенов вареного мяса (гетероциклическим амином)[1696]. Примерно треть чашки в день капусты брокколи поможет нашему организму очиститься от бензола, загрязняющего воздух[1697]. В одном из исследований было обнаружено, что сульфорафан способен уменьшать воспаление, вызванное автомобильными выхлопами, – их впрыскивали в нос испытуемым в объеме, имитирующем многочасовое пребывание на автостраде в Лос-Анджелесе в час пик[1698].

вернуться

1655

Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009;8:1. https://pubmed.ncbi.nlm.nih.gov/19144121/

вернуться

1656

Ristow M, Zarse K, Oberbach A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106(21):8665–70. https://pubmed.ncbi.nlm.nih.gov/19433800/

вернуться

1657

Braakhuis AJ. Effect of vitamin C supplements on physical performance. Curr Sports Med Rep. 2012;11(4):180–4. https://pubmed.ncbi.nlm.nih.gov/22777327/

вернуться

1658

Kashi DS, Shabir A, Da Boit M, Bailey SJ, Higgins MF. The efficacy of administering fruit-derived polyphenols to improve health biomarkers, exercise performance and related physiological responses. Nutrients. 2019;11(10):E2389. https://pubmed.ncbi.nlm.nih.gov/31591287/

вернуться

1659

Van der Avoort CMT, Van Loon LJC, Hopman MTE, Verdijk LB. Increasing vegetable intake to obtain the health promoting and ergogenic effects of dietary nitrate. Eur J Clin Nutr. 2018;72(11):1485–9. https://pubmed.ncbi.nlm.nih.gov/29559721/

вернуться

1660

Trapp D, Knez W, Sinclair W. Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature. J Sports Sci. 2010;28(12):1261–8. https://pubmed.ncbi.nlm.nih.gov/20845212/

вернуться

1661

Lyall KA, Hurst SM, Cooney J, et al. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R70–81. https://pubmed.ncbi.nlm.nih.gov/19403859/

вернуться

1662

Funes L, Carrera-Quintanar L, Cerdán-Calero M, et al. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur J Appl Physiol. 2011;111(4):695–705. https://pubmed.ncbi.nlm.nih.gov/20967458/

вернуться

1663

Ghezzi P, Jaquet V, Marcucci F, Schmidt HHHW. The oxidative stress theory of disease: levels of evidence and epistemological aspects. Br J Pharmacol. 2017;174(12):1784–96. https://pubmed.ncbi.nlm.nih.gov/27425643/

вернуться

1664

Scudellari M. The science myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/

вернуться

1665

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

вернуться

1666

Milisav I, Ribaric S, Poljsak B. Antioxidant vitamins and ageing. Subcell Biochem. 2018;90:1–23. https://pubmed.ncbi.nlm.nih.gov/30779004/

вернуться

1667

Smejkal GB, Kakumanu S. Enzymes and their turnover numbers. Expert Rev Proteom. 2019;16(7):543–4. https://pubmed.ncbi.nlm.nih.gov/31220960/

вернуться

1668

Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/

вернуться

1669

Zang H, Mathew RO, Cui T. The dark side of Nrf2 in the heart. Front Physiol. 2020;11:722. https://pubmed.ncbi.nlm.nih.gov/32733266/

вернуться

1670

Brandes MS, Gray NE. NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro. 2020;12:1759091419899782. https://pubmed.ncbi.nlm.nih.gov/31964153/

вернуться

1671

Sharma V, Kaur A, Singh TG. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharmacother. 2020;129:110373. https://pubmed.ncbi.nlm.nih.gov/32603894/

вернуться

1672

Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/

вернуться

1673

Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/

вернуться

1674

Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/

вернуться

1675

Ferguson LR, Schlothauer RC. The potential role of nutritional genomics tools in validating high health foods for cancer control: broccoli as example. Mol Nutr Food Res. 2012;56(1):126–46. https://pubmed.ncbi.nlm.nih.gov/22147677/

вернуться

1676

Sun Y, Yang T, Leak RK, Chen J, Zhang F. Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS Neurol Disord Drug Targets. 2017;16(3):326–38. https://pubmed.ncbi.nlm.nih.gov/28042770/

вернуться

1677

Yang L, Palliyaguru DL, Kensler TW. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. Semin Oncol. 2016;43(1):146–53. https://pubmed.ncbi.nlm.nih.gov/26970133/

вернуться

1678

Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic Biol Med. 2020;159:87–102. https://pubmed.ncbi.nlm.nih.gov/32730855/

вернуться

1679

Lewis KN, Mele J, Hayes JD, Buffenstein R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol. 2010;50(5):829–43. https://pubmed.ncbi.nlm.nih.gov/21031035/

вернуться

1680

Tullet JMA, Hertweck M, An JH, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 2008;132(6):1025–38. https://pubmed.ncbi.nlm.nih.gov/18358814/

вернуться

1681

Sykiotis GP, Bohmann D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell. 2008;14(1):76–85. https://pubmed.ncbi.nlm.nih.gov/18194654/

вернуться

1682

Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/

вернуться

1683

Yu C, Li Y, Holmes A, et al. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS ONE. 2011;6(11):e26729. https://pubmed.ncbi.nlm.nih.gov/22073188/

вернуться

1684

Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/

вернуться

1685

Andziak B, O’Connor TP, Buffenstein R. Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev. 2005;126(11):1206–12. https://pubmed.ncbi.nlm.nih.gov/16087218/

вернуться

1686

Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/

вернуться

1687

Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/

вернуться

1688

Zhou L, Zhang H, Davies KJA, Forman HJ. Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biol. 2018;14:35–40. https://pubmed.ncbi.nlm.nih.gov/28863281/

вернуться

1689

Mallard AR, Spathis JG, Coombes JS. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and exercise. Free Radic Biol Med. 2020;160:471–9. https://pubmed.ncbi.nlm.nih.gov/32871230/

вернуться

1690

Zhang DD, Chapman E. The role of natural products in revealing NRF2 function. Nat Prod Rep. 2020;37(6):797–826. https://pubmed.ncbi.nlm.nih.gov/32400766/

вернуться

1691

Su X, Jiang X, Meng L, Dong X, Shen Y, Xin Y. Anticancer activity of sulforaphane: the epigenetic mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev. 2018;2018:5438179. https://pubmed.ncbi.nlm.nih.gov/29977456/

вернуться

1692

Bose C, Alves I, Singh P, et al. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell. 2020;19(11):e13261. https://pubmed.ncbi.nlm.nih.gov/33067900/

вернуться

1693

Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep. 2017;7:14130. https://pubmed.ncbi.nlm.nih.gov/29074861/

вернуться

1694

Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/

вернуться

1695

Riso P, Martini D, Møller P, et al. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis. 2010;25(6):595–602. https://pubmed.ncbi.nlm.nih.gov/20713433/

вернуться

1696

Hoelzl C, Glatt H, Meinl W, et al. Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res. 2008;52(3):330–41. https://pubmed.ncbi.nlm.nih.gov/18293303/

вернуться

1697

Egner PA, Chen JG, Zarth AT, et al. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res. 2014;7(8):813–23. https://pubmed.ncbi.nlm.nih.gov/24913818/

вернуться

1698

Heber D, Li Z, Garcia-Lloret M, et al. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct. 2014;5(1):35–41. https://pubmed.ncbi.nlm.nih.gov/24287881/

54
{"b":"914685","o":1}