В какой момент нашей эволюционной истории мы перестали потреблять достаточное количество богатых антиоксидантами растений? Даже в каменном веке это, возможно, не было проблемой. Лишь недавно мы начали отказываться от цельной растительной пищи[1548]. Сегодня приверженцы палео- и низкоуглеводного питания, возможно, едят больше овощей, чем те, кто придерживается стандартной западной диеты[1549]. Отлично! Проблема не в том, что люди хотят сократить потребление углеводов, отказавшись от вредной пищи в пользу овощей. Проблема заключается в переходе на продукты животного происхождения. По мнению молекулярного биолога, диетолога, профессора Нью-Йоркского университета Марион Нестле, если и есть какой-то вывод из антропологических исследований рациона питания предков, то он заключается в том, что «диеты, основанные в основном на растительной пище, способствуют здоровью и долголетию»[1550]. В каких продуктах больше всего антиоксидантов? Наши доисторические предки потребляли большее количество антиоксидантов, чем мы, но не испытывали в них такой потребности. В современной жизни мы окружены новыми прооксидантными стрессами – от загрязнения воздуха и сигаретного дыма до алкоголя и нездоровой пищи, пестицидов и промышленных химикатов[1551]. Это делает еще более важным укрепление нашей природной антиоксидантной защиты с помощью продуктов питания, богатых антиоксидантами. Сегодня мы обладаем невиданным преимуществом: в любое время года можем получить сезонные продукты, например замороженные ягоды, со всего мира. Следовательно, поступление антиоксидантов в наш рацион значительно упрощается. Зная, что рацион с высоким антиоксидантным потенциалом снижает риск заболеть[1552] и умереть от рака[1553] и всех причин смерти, вместе взятых, ученые[1554]задались целью найти наиболее богатые антиоксидантами продукты питания. Шестнадцать исследователей со всего мира создали базу данных по антиоксидантному потенциалу более чем 3000 различных продуктов питания, напитков, добавок, трав и специй. Они протестировали все – от хлопьев для завтрака до измельченных высушенных листьев африканского баобаба, чтобы выяснить, в каких продуктах содержится больше всего антиоксидантов. Были протестированы даже десятки марок пива. (Пиво Santa Claus из австрийского города Эггенберг оказалось самым богатым антиоксидантами[1555].) Вообще пиво является четвертым по объему источником пищевых антиоксидантов для американцев[1556]. Ознакомьтесь с таблицей, чтобы узнать, какое место занимают ваши любимые продукты и напитки в рейтинге see.nf/antioxidantlist. Нет необходимости вешать на холодильник всю таблицу на 138 страницах. Просто запомните простое правило: в среднем в растительной пище в 64 раза больше антиоксидантов, чем в животной[1557]. Как отмечают исследователи, «богатые антиоксидантами продукты происходят из растительного царства, в то время как в мясе, рыбе и других продуктах из животного царства мало антиоксидантов». Даже салат-латук, который на 96 % состоит из воды[1558] и является наименее полезной растительной пищей, содержит 17 единиц (микромолей на декаграмм по модифицированному методу FRAP) антиоксидантного потенциала. В некоторых ягодах – более тысячи единиц, в сравнении с ними салат айсберг бледнеет. Но сравните 17 единиц айсберга с некоторыми распространенными продуктами животного происхождения. Свежий лосось может похвастать всего тремя единицами антиоксидантов, курица – пятью единицами, а обезжиренное молоко и вареное яйцо – четырьмя. «Таким образом, рацион, состоящий в основном из продуктов животного происхождения, отличается низким содержанием антиоксидантов, – заключает группа исследователей, – в то время как рацион, состоящий в основном из разнообразных продуктов растительного происхождения, богат антиоксидантами благодаря тысячам биоактивных антиоксидантных фитохимических веществ в растениях, сохраняющихся во многих продуктах питания и напитках».
Среди растительных продуктов питания ягоды в среднем в 10 раз превосходят по антиоксидантной активности другие овощи и фрукты, уступая лишь травам и специям. Вишня может содержать до 714 единиц, но нет необходимости выбирать отдельные продукты, чтобы увеличить потребление антиоксидантов. Просто старайтесь включать в каждый прием пищи разнообразные фрукты, овощи и приправы без соли. Так вы будете постоянно насыщать свой организм антиоксидантами, что поможет избежать возрастных заболеваний. Повышение антиоксидантного потенциала крови Так же как можно измерить количество антиоксидантов в продуктах питания и напитках, можно измерить уровень антиоксидантов в крови. По сравнению с большинством продуктов, представленных в овощном отделе супермаркета, уровень антиоксидантов в нашем организме весьма скромен. Как и мясо, мы тоже недотягиваем даже до уровня салата айсберг[1559]! Но мясо – это то, из чего мы сделаны, так что, думаю, в нашем отставании от салата нет ничего удивительного. Не просто измерение антиоксидантного потенциала продукта в пробирке, а отслеживание изменения антиоксидантного потенциала нашей крови после приема пищи позволяет подтвердить, что антиоксиданты эффективно всасываются в организм. Возможно, антиоксидантные добавки не способны избавить ДНК от окислительного повреждения[1560] или хотя бы уменьшить его[1561], [1562], но фрукты и овощи могут сделать и то и другое[1563], [1564], [1565]. И чем выше антиоксидантный статус крови, тем дольше мы живем[1566]. Антиоксидантный потенциал крови может быть просто маркером более здорового питания[1567], но в одном исследовании было обнаружено, что употребление клетчатки не дает заметных преимуществ в плане продолжительности жизни[1568]. Вероятно, мы живем дольше не только потому, что едим больше цельной растительной пищи. Возьмите, к примеру, чай. Чай не содержит клетчатки и является основным источником антиоксидантов в американском рационе[1569]. Потребление чая само по себе ассоциируется с большей продолжительностью жизни[1570]. Богатые антиоксидантами продукты в каждой тарелке Каждый прием пищи – это возможность изменить баланс в прооксидантную или антиоксидантную сторону. Обед с малым количеством продуктов, богатых антиоксидантами, может привести в прооксидантное состояние на несколько часов, как следствие – падение уровня антиоксидантов в крови, поскольку запасы их в организме постепенно расходуются[1571]. (Детали: see.nf/antioxidantmeals) Мы же не хотим в течение дня откатываться назад и в итоге иметь в организме меньше антиоксидантов, чем при пробуждении. Это особенно важно в условиях повышенного окислительного стресса, вызванного болезнью, пассивным курением, загрязнением воздуха или недостатком сна[1572]. вернутьсяCoffey DS. Similarities of prostate and breast cancer: evolution, diet, and estrogens. Urology. 2001;57(4 Suppl 1):31–8. https://pubmed.ncbi.nlm.nih.gov/11295592/ вернутьсяJallinoja P, Niva M, Helakorpi S, Kahma N. Food choices, perceptions of healthiness, and eating motives of self-identified followers of a low-carbohydrate diet. Food Nutr Res. 2014;58:23552. https://pubmed.ncbi.nlm.nih.gov/25490960/ вернутьсяNestle M. Paleolithic diets: a sceptical view. Nutr Bull. 2000;25:43–7. https://nyuscholars.nyu.edu/en/publications/paleolithic-diets-a-sceptical-view вернутьсяVatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101194. https://pubmed.ncbi.nlm.nih.gov/33091597/ вернутьсяAbbasalizad Farhangi M, Vajdi M. Dietary total antioxidant capacity (TAC) significantly reduces the risk of site-specific cancers: an updated systematic review and meta-analysis. Nutr Cancer. 2021;73(5):721–39. https://pubmed.ncbi.nlm.nih.gov/32462920/ вернутьсяParohan M, Anjom-Shoae J, Nasiri M, Khodadost M, Khatibi SR, Sadeghi O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2019;58(6):2175–89. https://pubmed.ncbi.nlm.nih.gov/30756144/ вернутьсяJayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants, circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Adv Nutr. 2018;9(6):701–16. https://pubmed.ncbi.nlm.nih.gov/30239557/ вернутьсяCarlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/ вернутьсяYang M, Chung SJ, Chung CE, et al. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63. https://pubmed.ncbi.nlm.nih.gov/21320369/ вернутьсяCarlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010 Jan 22;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/ вернутьсяBastin S, Henken K. Water content of fruits and vegetables. University of Kentucky College of Agriculture Cooperative Extension Service. https://www.academia.edu/5729963/Water_Content_of_Fruits_and_Vegetables. Published December 1997. Accessed November 11, 2021.; https://www.academia.edu/5729963/Water_Content_of_Fruits_and_Vegetables вернутьсяCao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. 1998;44(6 Pt 1):1309–15. https://pubmed.ncbi.nlm.nih.gov/9625058/ вернутьсяHalliwell B. The antioxidant paradox: less paradoxical now? Br J Clin Pharmacol. 2013;75(3):637–44. https://pubmed.ncbi.nlm.nih.gov/22420826/ вернутьсяvan Poppel G, Poulsen H, Loft S, Verhagen H. No influence of beta carotene on oxidative DNA damage in male smokers. J Natl Cancer Inst. 1995;87(4):310–1. https://pubmed.ncbi.nlm.nih.gov/7707423/ вернутьсяPriemé H, Loft S, Nyyssönen K, Salonen JT, Poulsen HE. No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2’-deoxyguanosine excretion in smokers. Am J Clin Nutr. 1997;65(2):503–7. https://pubmed.ncbi.nlm.nih.gov/9022536/ вернутьсяCao G, Booth SL, Sadowski JA, Prior RL. Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am J Clin Nutr. 1998;68(5):1081–7. https://pubmed.ncbi.nlm.nih.gov/9808226/ вернутьсяJohnson SA, Feresin RG, Navaei N, et al. Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation, and antioxidant defense in postmenopausal women with pre-and stage 1-hypertension: a randomized controlled trial. Food Funct. 2017;8(1):372–80. https://pubmed.ncbi.nlm.nih.gov/28059417/ вернутьсяVerhagen H, Poulsen HE, Loft S, van Poppel G, Willems MI, van Bladeren PJ. Reduction of oxidative DNA-damage in humans by brussels sprouts. Carcinogenesis. 1995;16(4):969–70. https://pubmed.ncbi.nlm.nih.gov/7728983/ вернутьсяJayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants, circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Adv Nutr. 2018;9(6):701–16. https://pubmed.ncbi.nlm.nih.gov/30239557/ вернутьсяHa K, Kim K, Sakaki JR, Chun OK. Relative validity of dietary total antioxidant capacity for predicting all-cause mortality in comparison to diet quality indexes in US adults. Nutrients. 2020;12(5):1210. https://pubmed.ncbi.nlm.nih.gov/32344879/ вернутьсяBastide N, Dartois L, Dyevre V, et al. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr. 2017;56(3):1233–43. https://pubmed.ncbi.nlm.nih.gov/26887577/ вернутьсяYang M, Chung SJ, Chung CE, et al. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63. https://pubmed.ncbi.nlm.nih.gov/21320369/ вернутьсяBastide N, Dartois L, Dyevre V, et al. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr. 2017;56(3):1233–43. https://pubmed.ncbi.nlm.nih.gov/26887577/ вернутьсяMohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab. 2000;85(8):2970–3. https://pubmed.ncbi.nlm.nih.gov/10946914/ вернутьсяPrior RL, Gu L, Wu X, et al. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr. 2007;26(2):170–81. https://pubmed.ncbi.nlm.nih.gov/17536129/ |