Литмир - Электронная Библиотека
Содержание  
A
A

Существуют интервенционные исследования, показывающие, что снижение общего потребления белка до рекомендуемых уровней[1003] и (или) переход с животных на растительные источники белка имеет целый ряд метаболических преимуществ[1004]. Однако в проспективном исследовании Лонго и соавторов положительная связь между снижением потребления белка и снижением смертности в среднем возрасте примерно в возрасте 65 лет сменилась отрицательной. Это может быть связано с обратной причинно-следственной связью: например, немощные взрослые могут чаще страдать от недоедания. Тем не менее исследователи рекомендуют после 65 лет потреблять не менее 10 % калорий из белка, что при рационе в 2000 калорий в день составляет 50 г белка, предпочтительно растительного[1005].

Пища для размышлений

Считается, что инсулиноподобный фактор роста ИФР-1 имеет кардинальное значение для развития рака[1006], поэтому снижение активности ИФР-1 не только способно замедлить процесс старения[1007], но и может стать способом направить антивозрастные гены на борьбу с раком[1008]. ИФР-1 повышается при высокобелковой диете, в частности, за счет животного белка. Это объясняет преимущества растительного питания[1009], а также то, почему диета с относительно низкой долей белка считается критически важной для здоровья на протяжении всей жизни[1010].

Чтобы замедлить старение:

• придерживайтесь рекомендуемой нормы суточного потребления белка – 0,8 г на килограмм массы тела, что составляет около 45 г в день для женщины среднего роста и около 55 г в день для мужчины среднего роста;

• делайте выбор в пользу растительных источников белка, когда это возможно.

Воспаление

В последние годы одним из наиболее важных с медицинской точки зрения открытий стало признание потенциальной роли воспаления в развитии многих хронических заболеваний – по крайней мере восьми из десяти ведущих причин смерти[1011]. Масштабность этого нового понимания сравнивают с открытием микробной теории болезней много веков назад, которая произвела революцию в профилактике и лечении инфекционных заболеваний[1012].

На протяжении большей части нашего существования на Земле инфекции были основной причиной смерти и болезней. Без мыла, санитарии и очистки воды мы были безоружны перед натиском внутренних паразитов и внешних микробных угроз. Без антибиотиков поцарапанная коленка могла стать смертельной раной, поэтому наша иммунная система развивались так, чтобы всегда быть в состоянии повышенной готовности, предпочитая «скорее перебдеть, чем недобдеть»[1013]. Однако иногда это может принести нам больше вреда, чем пользы. Например, при травме головы могут погибнуть сотни тысяч клеток мозга, но последующая воспалительная реакция может привести к гибели миллионов клеток мозга или самого пациента[1014].

Метавоспаление

Воспаление создано ради пользы. Например, когда в палец впивается заноза и он краснеет, становится теплым, болезненным и опухает, это воспаление – естественный ответ организма на повреждение или раздражение тканей. Его цель – запустить процесс выздоровления, а не болезни.

Реакция организма на занозу является примером острого воспаления – локализованной, временной, прямой реакции на инфекцию или травму, направленной на решение проблемы. Хроническое же воспаление, называемое также метаболическим воспалением, или метавоспалением, является системным, постоянным, неспецифическим и, по-видимому, закрепляет болезнь[1015]. Оно имеет скрытый, тлеющий характер и может быть обнаружено в анализах крови, показывающих аномально высокий уровень маркеров воспаления, таких как С-реактивный белок (CRP).

В идеале уровень CRP в крови не превышает 1 мг/л[1016], но при наличии инфекции он может в течение нескольких часов подскочить до 100 мг/л и более[1017]. Сегодня высокочувствительные анализы крови на CRP позволяют измерять его уровень с точностью до долей пункта, что заставило медицинское сообщество признать, что исходный уровень всего в 2–3 мг/л может подвергать нас повышенному риску таких катастроф, как инфаркты и инсульты[1018]. Исходный уровень CRP менее 1 мг/л означает более низкий риск, однако у большинства американцев среднего возраста показатель CRP превышает этот уровень, что свидетельствует о том, что большинство из них страдают от хронического воспаления, которое с возрастом усугубляется.

Воспалительная теория старения

С возрастом иммунная система постепенно разрушается, это называется иммуносенситивностью[1019]. Это объясняет, почему, например, пневмония занимает 10-е место среди причин смерти в возрасте 50–60 лет и 8-е место в возрасте 65 лет и старше[1020]. Именно поэтому могут вновь проявляться латентные вирусы – например, ветряная оспа, проспав полвека, проявляется в виде опоясывающего лишая. Это также объясняет, почему с возрастом вакцины работают не так эффективно. Ежегодная вакцинация против гриппа эффективна лишь на 50 % среди тех, кто больше всего в ней нуждается[1021].

С другой стороны, активированные иммунные клетки 80-летних вырабатывают значительно больше провоспалительных сигналов[1022]. Это говорит о худшем из двух вариантов – снижении активности той части иммунной системы, которая борется со специфическими инфекциями, и усилении неспецифических реакций, которые могут привести к воспалению[1023]. Такое прогрессирующее повышение провоспалительного статуса сегодня признается одной из основных характеристик процесса старения, а в 2000 году оно было формализовано в концепцию «воспаление + старение» (inflammaging) – хронического воспаления низкой интенсивности, которое может быть ответственно за дальнейшее ухудшение состояния здоровья и возникновение заболеваний у пожилых людей[1024], [1025].

С возрастом уровень CRP повышается; это ассоциируется с ухудшением физической и когнитивной работоспособности[1026], снижением выживаемости и жизненного тонуса[1027] и целым рядом возрастных заболеваний, включая болезни Альцгеймера, Паркинсона, сердечно-сосудистые заболевания, диабет и хронические заболевания почек[1028]. Считается, что воспаление также играет ключевую роль в развитии дегенеративных заболеваний позвоночника[1029] и уменьшении мышечной массы и силы с возрастом[1030].

вернуться

1003

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

вернуться

1004

Chainani-Wu N, Weidner G, Purnell DM, et al. Changes in emerging cardiac biomarkers after an intensive lifestyle intervention. Am J Cardiol. 2011;108(4):498–507. https://pubmed.ncbi.nlm.nih.gov/21624543/

вернуться

1005

Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/

вернуться

1006

Werner H, Laron Z. Role of the GH-IGF1 system in progression of cancer. Mol Cell Endocrinol. 2020;518:111003. https://pubmed.ncbi.nlm.nih.gov/32919021/

вернуться

1007

McCarty MF. A low-fat, whole-food vegan diet, as well as other strategies that down-regulate IGF-I activity, may slow the human aging process. Med Hypotheses. 2003;60(6):784–92. https://pubmed.ncbi.nlm.nih.gov/12699704/

вернуться

1008

Longo VD, Lieber MR, Vijg J. Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol. 2008;9(11):903–10. https://pubmed.ncbi.nlm.nih.gov/18946478/

вернуться

1009

McCarty MF. GCN2 and FGF21 are likely mediators of the protection from cancer, autoimmunity, obesity, and diabetes afforded by vegan diets. Med Hypotheses. 2014;83(3):365–71. https://pubmed.ncbi.nlm.nih.gov/25015767/

вернуться

1010

Piper MDW, Soultoukis GA, Blanc E, et al. Matching dietary amino acid balance to the in silico – translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 2017;25(3):610–21. https://pubmed.ncbi.nlm.nih.gov/28273481/

вернуться

1011

Slavich GM. Understanding inflammation, its regulation, and relevance for health: a top scientific and public priority. Brain Behav Immun. 2015;45:13–4. https://pubmed.ncbi.nlm.nih.gov/25449576/

вернуться

1012

Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/

вернуться

1013

Rubio-Ruiz ME, Peredo-Escárcega AE, Cano-Martínez A, Guarner-Lans V. An evolutionary perspective of nutrition and inflammation as mechanisms of cardiovascular disease. Int J Evol Biol. 2015:2015:179791.; https://pubmed.ncbi.nlm.nih.gov/26693381/

вернуться

1014

Rogers J. The inflammatory response in Alzheimer’s disease. J Periodontol. 2008;79(8 Suppl):1535–43. https://pubmed.ncbi.nlm.nih.gov/18673008/

вернуться

1015

Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/

вернуться

1016

Ridker PM. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation. 2003;108(12):e81–5. https://pubmed.ncbi.nlm.nih.gov/14504253/

вернуться

1017

Bray C, Bell LN, Liang H, et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ. 2016;115(6):317–21. https://pubmed.ncbi.nlm.nih.gov/29094869/

вернуться

1018

Ridker PM. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation. 2003;108(12):e81–5. https://pubmed.ncbi.nlm.nih.gov/14504253/

вернуться

1019

Bottazzi B, Riboli E, Mantovani A. Aging, inflammation and cancer. Semin Immunol. 2018;40:74–82. https://pubmed.ncbi.nlm.nih.gov/30409538/

вернуться

1020

National Center for Injury Prevention and Control, CDC using WISQARSÔ.10 leading causes of death by age group, United States—2018. Centers for Disease Control and Prevention. https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_by_age_group_2018_1100w850h.jpg. Accessed June 29, 2021.; https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_by_age_group_2018_1100w850h.jpg

вернуться

1021

Weyh C, Krüger K, Strasser B. Physical activity and diet shape the immune system during aging. Nutrients. 2020;12(3):622. https://pubmed.ncbi.nlm.nih.gov/32121049/

вернуться

1022

Fagiolo U, Cossarizza A, Scala E, et al. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23(9):2375–8. https://pubmed.ncbi.nlm.nih.gov/8370415/

вернуться

1023

Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8:1960. https://pubmed.ncbi.nlm.nih.gov/29375577/

вернуться

1024

Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16(1):14–20. https://pubmed.ncbi.nlm.nih.gov/23132168/

вернуться

1025

Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–54. https://pubmed.ncbi.nlm.nih.gov/10911963/

вернуться

1026

Tang Y, Fung E, Xu A, Lan HY. C-reactive protein and ageing. Clin Exp Pharmacol Physiol. 2017;44(S1):9–14. https://pubmed.ncbi.nlm.nih.gov/28378496/

вернуться

1027

Tait JL, Duckham RL, Milte CM, Main LC, Daly RM. Associations between inflammatory and neurological markers with quality of life and well-being in older adults. Exp Gerontol. 2019;125:110662. https://pubmed.ncbi.nlm.nih.gov/31323254/

вернуться

1028

Tang Y, Fung E, Xu A, Lan HY. C-reactive protein and ageing. Clin Exp Pharmacol Physiol. 2017;44(S1):9–14. https://pubmed.ncbi.nlm.nih.gov/28378496/

вернуться

1029

Rajasekaran S, Tangavel C, Anand SV KS, et al. Inflammaging determines health and disease in lumbar discs – evidence from differing proteomic signatures of healthy, aging, and degenerating discs. Spine J. 2020;20(1):48–59. https://pubmed.ncbi.nlm.nih.gov/31125691/

вернуться

1030

Pedersen BK. Anti-inflammation – just another word for anti-ageing? J Physiol. 2009;587(Pt 23):5515. https://pubmed.ncbi.nlm.nih.gov/19959548/

34
{"b":"914685","o":1}