Литмир - Электронная Библиотека
Содержание  
A
A

Согласно этой теории, чем ниже скорость образования свободных радикалов в митохондриях, тем дольше живут животные. Это не зависит от скорости метаболизма. Например, у летучих мышей и птиц высокий метаболизм, и при этом они живут относительно долго. Просто митохондрии долгоживущих видов более эффективны. Они часто пропускают меньше электронов, что коррелирует с меньшим окислительным повреждением митохондриальной ДНК[1489]. (Митохондрии имеют свои собственные крошечные петли ДНК, которые, как считается, кодируют всего 13 белков[1490] и отделены от основной массы ДНК, кодирующей более 20 000 генов в клеточном ядре[1491].) К счастью, эффективность митохондрий не является какой-то неизменной характеристикой. Мы можем снизить уровень образования свободных радикалов в митохондриях с помощью физических упражнений[1492] и одного изменения в рационе питания – снижения потребления аминокислоты метионина[1493].

Как снизить потребление метионина

Содержание метионина в тканях обратно пропорционально продолжительности жизни млекопитающих. Чем ниже содержание метионина, тем продолжительнее жизнь. Это наблюдение хорошо встраивается в митохондриальную теорию, поскольку метионин является наиболее чувствительным к окислению компонентом белка[1494]. Однако высокий уровень метионина не только делает организм уязвимым к окислительному стрессу, но и активно его вызывает. Даже в пробирке, когда метионин капают на изолированные митохондрии, они начинают генерировать больше свободных радикалов[1495]. Чтобы выяснить, можно ли с помощью диеты уменьшить их количество, исследователи провели эксперимент.

У грызунов ограничение рациона питания на 40 % снижает скорость образования свободных радикалов в митохондриях и увеличивает продолжительность их жизни. Было установлено, что в основе этого лежит уменьшение потребления белка. Но если не ограничивать рацион полностью, а только сократить количество белка, результат будет таким же. А вот ограничение жиров или углеводов не влияло ни на образование свободных радикалов, ни на продолжительность жизни. Оказалось также, что польза ограничения белка для митохондрий связана с уменьшением содержания одной аминокислоты – метионина[1496]. Ограничение других пищевых аминокислот, за исключением метионина, не влияло ни на поток свободных радикалов в митохондриях, ни на повреждение ДНК, а ограничение только метионина влияло и на то и на другое[1497]. Это позволило сделать вывод, что утечка электронов в митохондриях, по-видимому, контролируется количеством метионина в рационе[1498].

Ограничение потребления метионина крысами в течение 7 недель уменьшало утечку электронов, образование свободных радикалов и повреждение митохондриальной ДНК[1499]. Это привело к замедлению старения, о чем свидетельствует снижение частоты развития ряда дегенеративных возрастных заболеваний и увеличение продолжительности жизни[1500]. Как уже говорилось в главах, посвященных другим путям борьбы со старением, таким как аутофагия (см. с. 32), существует множество способов продления жизни, но считается, что одно только ограничение метионина – это уже полпути к цели (продлению срока жизни), и достичь ее можно с помощью ограничения питания[1501].

Снизить потребление метионина можно тремя способами. Первый – уменьшить общее количество потребляемой пищи, но это обречет нас на полуголодное существование. Второй – снизить количество метионина, просто уменьшив общее количество потребляемого белка[1502]. Многие американцы едят в 2 раза больше белка, чем необходимо[1503], поэтому речь может идти о том, чтобы перейти от чрезмерного потребления к рекомендуемому[1504]. В течение нескольких недель можно значительно улучшить метаболизм, вероятно, благодаря сопутствующему снижению потребления аминокислот с разветвленной цепью[1505]. Третий способ снизить потребление метионина – заменить животный белок на растительный[1506] (см. список источников метионина на с. 642).

Когда-то сравнительно низкое содержание метионина в бобовых (фасоль, горох, нут и чечевица) считалось недостатком питания. Позднее исследователи долголетия пришли к выводу, что то, что ранее оценивалось как недостаток (ограничение метионина), оказывается преимуществом[1507]. Это согласуется с данными о том, что потребление бобовых может быть наиболее важным диетическим предиктором выживаемости у пожилых людей во всем мире[1508], базой диеты долгожителей «голубых зон»[1509]. Считается, что растительная диета делает ограничение метионина «целесообразным в качестве стратегии продления жизни»[1510].

Что насчет антиоксидантных добавок?

Антиоксидантные добавки – это многомиллиардная индустрия[1511]. Их часто рекламируют как антивозрастные средства, несмотря на то что сотни исследований не нашли четких доказательств обещанного эффекта[1512]. Оказалось, что люди, принимающие антиоксидантные добавки, не живут дольше[1513]. Более того, в ходе рандомизированных контролируемых исследований выяснилось, что прием бета-каротина, витамина А и витамина Е приводит к увеличению смертности[1514]. Таким образом, потребители добавок, возможно, платят за то, чтобы сократить себе жизнь.

В видеоролике see.nf/antioxsupplements я объясняю, почему так происходит. Например, добавки содержат лишь несколько антиоксидантов, в то время как наш организм зависит от сотен антиоксидантов, которые работают вместе, создавая сеть, помогающую избавляться от свободных радикалов[1515]. Высокие дозы одного антиоксиданта способны нарушить этот хрупкий баланс[1516]. Вместо того чтобы работать изолированно, они могут действовать синергически[1517]. По сути, целое (продукт питания) – это больше, чем сумма его частей[1518].

Близкое соседство или даже физический контакт между митохондриальной ДНК и источником образования свободных радикалов, вероятно, объясняет, почему антиоксиданты не могут замедлить темпы старения[1519]. Но это не означает, что антиоксиданты не могут предотвратить возрастные заболевания, связанные с окислительным повреждением 99,999995 %[1520] нашей ДНК вне митохондрий.

вернуться

1489

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

вернуться

1490

Capt C, Passamonti M, Breton S. The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA Part A. 2016;27(5):3098–101. https://pubmed.ncbi.nlm.nih.gov/25630734/

вернуться

1491

Willyard C. New human gene tally reignites debate. Nature. 2018;558(7710):354–5. https://pubmed.ncbi.nlm.nih.gov/29921859/

вернуться

1492

Venditti P, Masullo P, Di Meo S. Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys. 1999;372(2):315–20. https://pubmed.ncbi.nlm.nih.gov/10600170/

вернуться

1493

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

вернуться

1494

Ruiz MC, Ayala V, Portero-Otín M, Requena JR, Barja G, Pamplona R. Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals. Mech Ageing Dev. 2005;126(10):1106–14. https://pubmed.ncbi.nlm.nih.gov/15955547/

вернуться

1495

Gomez J, Sanchez-Roman I, Gomez A, et al. Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr. 2011;43(4):377–86. https://pubmed.ncbi.nlm.nih.gov/21748404/

вернуться

1496

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

вернуться

1497

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

вернуться

1498

Sanz A, Stefanatos RKA. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21. https://pubmed.ncbi.nlm.nih.gov/20021368/

вернуться

1499

Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006;20(8):1064–73. https://pubmed.ncbi.nlm.nih.gov/16770005/

вернуться

1500

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

вернуться

1501

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

вернуться

1502

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

вернуться

1503

What we eat in America, NHANES 2017–2018. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/tables_1–36%20and%2041–56_2017–2018.pdf. Published 2020. Accessed July 6, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/wweia_2017_2018_data.pdf

вернуться

1504

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

вернуться

1505

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

вернуться

1506

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

вернуться

1507

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

вернуться

1508

Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13(2):217–20. https://pubmed.ncbi.nlm.nih.gov/15228991/

вернуться

1509

Buettner D. The Blue Zones: 9 Lessons for Living Longer from the People Who’ve Lived the Longest. 2nd ed. National Geographic Books; 2012. https://www.worldcat.org/title/777659970

вернуться

1510

McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/

вернуться

1511

Scudellari M. Myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/

вернуться

1512

Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan. 2014;3(1):4. https://pubmed.ncbi.nlm.nih.gov/24690218/

вернуться

1513

Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/

вернуться

1514

Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17(1):40–4. https://pubmed.ncbi.nlm.nih.gov/24241129/

вернуться

1515

Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet. 2004;364(9441):1219–28. https://pubmed.ncbi.nlm.nih.gov/15464182/

вернуться

1516

Serafini M, Jakszyn P, Luján-Barroso L, et al. Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2012;131(4):E544–54. https://pubmed.ncbi.nlm.nih.gov/22072493/

вернуться

1517

Jacobs DR, Tapsell LC. Food synergy: the key to a healthy diet. Proc Nutr Soc. 2013;72(2):200–6. https://pubmed.ncbi.nlm.nih.gov/23312372/

вернуться

1518

Cömert ED, Gökmen V. Evolution of food antioxidants as a core topic of food science for a century. Food Res Int. 2018;105:76–93. https://pubmed.ncbi.nlm.nih.gov/29433271/

вернуться

1519

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

вернуться

1520

Chial H, Craig J. mtDNA and mitochondrial diseases. Nature Education. 2008;1(1):217. https://www.nature.com/scitable/topicpage/mtdna-and-mitochondrial-diseases-903/

49
{"b":"914685","o":1}