Калибровка метилирования Физические упражнения, фрукты и овощи, снижение потребления табака и мяса могут способствовать замедлению старения, о чем свидетельствует торможение хода эпигенетических часов, но как быть с прямым изменением метилирования ДНК? На паттерны метилирования влияет множество факторов, но их модификации трудно интерпретировать. Например, в одном из исследований диета с высоким содержанием жиров вызвала масштабные изменения метилирования ДНК у мужчин всего за 5 дней, затронув более 6000 генов. Они частично восстановились только через 6–8 недель после возвращения участников к обычному рациону питания[646]. Причем переедание насыщенных жиров вызывает иные изменения метилирования, чем переедание полиненасыщенных жиров, но с каким результатом[647]? Мы не знаем. Имеют ли эпигенетические изменения какие-то физиологические последствия или они случайны? Мы только начинаем выяснять это. Например, теперь мы знаем, что среди устойчивых различий в метилировании у веганов по сравнению со всеядными – гипометилирование (меньшее метилирование) гена-супрессора опухоли и гена, кодирующего фермент репарации ДНК[648]. Поскольку метилирование «глушит» гены, их разблокировка может объяснить более низкий общий уровень заболеваемости раком среди тех, кто придерживается растительной диеты[649], [650]. Аналогичным образом у вегетарианцев реже метилируется фермент супероксиддисмутаза. Это антиоксидантный фермент, способный подавлять миллион свободных радикалов в секунду[651].Гипометилирование связано с трехкратным увеличением экспрессии этого детоксицирующего фермента, что объясняет «более высокую защиту от хронических заболеваний у вегетарианцев»[652]. Есть данные и о том, что масштабные сдвиги метилирования могут иметь последствия для здоровья и долголетия. Если усилить действие фермента, который осуществляет метилирование у плодовых мушек, можно продлить среднюю продолжительность их жизни более чем на 50 %. Если подавить этот фермент, то продолжительность жизни сократится. Однако пока не доказано, что эта стратегия работает у млекопитающих[653]. Метилирование ДНК человека гораздо сложнее. Однако результаты исследования плодовой мушки позволяют предположить, что увеличение глобального потенциала метилирования может положительно влиять на продолжительность жизни. С чистого листа Наиболее изученным фактором питания, оказывающим эпигенетическое воздействие, является фолиевая кислота[654]. Это дополнительная форма фолата – витамина группы В, содержащегося в бобовых и в зелени, который превращается в донор метила. (Слово «фолат» происходит от латинского корня folium, что в переводе с латинского означает «лист»)[655]. Метильная группа, которая попадает в ДНК, может образовываться, например, из фолата в салате или из фолиевой кислоты в добавках или обогащенной муке. Рекомендуемая суточная норма для большинства взрослых составляет 400 микрограммов (мкг)[656], однако среднесуточное потребление фолатов пожилыми мужчинами и женщинами составляет менее 300 мкг, а треть не добирает и 200 мкг[657]. Каковы эпигенетические последствия? Для изучения эпигенетических эффектов женщин в постменопаузе сажали на диету с относительно низким содержанием фолатов. Несмотря на то что уровень фолатов не упал настолько, чтобы проявились клинические признаки дефицита (например, анемия), в течение 2 месяцев у испытуемых наблюдалось гипометилирование ДНК по всему геному. Однако при возобновлении потребления фолатов в здоровом объеме это явление исчезало в течение 3 недель[658]. В последующем исследовании, в котором участвовали еще более пожилые люди, наблюдалось такое же недостаточное метилирование, но для его восстановления потребовалось больше времени, что подчеркивает важность поддержания достаточного уровня фолатов в организме[659]. Метаанализ рандомизированных контролируемых исследований, проведенных с использованием самых современных методов лабораторного анализа, выявил увеличение глобального уровня метилирования в результате увеличения потребления фолиевой кислоты, что позволяет предположить, что большинство из нас, возможно, не получает ее достаточного количества в своем рационе[660]. Эталона «нормального» уровня метилирования не существует, поэтому такие термины, как «гипометилирование», используются как относительная величина[661], что затрудняет функциональную интерпретацию этих изменений[662]. Но факт остается фактом: наши древние предки ели гораздо больше листьев. Вероятно, они получали в 2 раза больше фолатов, чем мы сегодня[663], поэтому то, что наш организм использует дополнительную метильную группу при повышении уровня фолиевой кислоты, говорит о неоптимальности нашего фолатного статуса. Впрочем, это легко исправить. Например, просто выполните мои рекомендации по ежедневному употреблению бобовых и темно-зеленых листовых овощей. Что надо знать о MTHFR? Так называемые мутации MTHFR[664] являются козырной картой, которую часто разыгрывают врачи альтернативной медицины[665] для назначения специальных добавок (которые они, по случайному совпадению, еще и продают) при различных распространенных заболеваниях[666]. MTHFR – это фермент, который вырабатывается нашим организмом для активации фолата. Распространенный вариант гена MTHFR, при котором в 677-й позиции ДНК находится кодовая буква T, а не более распространенная C, приводит к снижению функциональности фермента. Это может иметь эпигенетические последствия, так как у тех, кто получил вариант Т от обоих родителей (около 10 % населения Земли)[667], снижено метилирование ДНК, но только при низком потреблении фолатов[668]. Если же вы получаете достаточное их количество, то уровень метилирования будет одинаковым независимо от наличия у вас Т-вариантов. Аналогично у тех, кто имеет два гена с вариантом Т, может быть повышен риск развития рака, но опять же только у тех, кто не получает достаточного количества фолатов[669]. Вам не нужен и особый вид фолатов. Фолаты в продуктах питания и фолиевая кислота в добавках и обогащенных продуктах вполне пригодны для использования – вне зависимости от того, какой у вас тип гена[670]. Поскольку каждый человек должен стремиться получать достаточное количество фолатов, нет никакой пользы от рутинного генетического тестирования, чтобы узнать, нет ли у него мутаций, и ведущие медицинские организации в этой области не рекомендуют проводить тестирование на MTHFR[671]. Единственное, что бы следовало сделать, если бы вы узнали, что у вас двойная доза менее функционального фермента, – это проявлять осторожность при употреблении алкоголя. Ацетальдегид, продукт распада алкоголя, может разрушать фолаты в нашем организме[672], поэтому людям с двойным Т следует ограничить потребление алкоголя до одной порции в день[673]. Но поскольку все, вероятно, должны стараться минимизировать потребление алкоголя[674], я согласен с тем, что знание персонального профиля метилирования MTHFR не имеет особого смысла. вернутьсяJacobsen SC, Brøns C, Bork-Jensen J, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55(12):3341–9. https://pubmed.ncbi.nlm.nih.gov/22961225/ вернутьсяPerfilyev A, Dahlman I, Gillberg L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):991–1000. https://pubmed.ncbi.nlm.nih.gov/28275132/ вернутьсяMiles FL, Mashchak A, Filippov V, et al. DNA methylation profiles of vegans and non-vegetarians in the Adventist Health Study-2 cohort. Nutrients. 2020;12(12):3697. https://pubmed.ncbi.nlm.nih.gov/33266012/ вернутьсяKey TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am J Clin Nutr. 2014;100 Suppl 1:378S-85S. https://pubmed.ncbi.nlm.nih.gov/24898235/ вернутьсяTantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/ вернутьсяMcCord JM. Analysis of superoxide dismutase activity. Curr Protoc Toxicol. 2001;Chapter 7:Unit7.3. https://pubmed.ncbi.nlm.nih.gov/23045062/ вернутьсяThaler R, Karlic H, Rust P, Haslberger AG. Epigenetic regulation of human buccal mucosa mitochondrial superoxide dismutase gene expression by diet. Br J Nutr. 2009;101(5):743–9. https://pubmed.ncbi.nlm.nih.gov/18684339/ вернутьсяJohnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012;15(5):483–94. https://pubmed.ncbi.nlm.nih.gov/23098078/ вернутьсяElGendy K, Malcomson FC, Lara JG, Bradburn DM, Mathers JC. Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. Br J Nutr. 2018;120(9):961–76. https://pubmed.ncbi.nlm.nih.gov/30355391/ вернутьсяMiller JW. Factors associated with different forms of folate in human serum: the folate folio continues to grow. J Nutr. 2020;150(4):650–1. https://pubmed.ncbi.nlm.nih.gov/32119743/ вернутьсяInstitute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press (US); 1998. https://pubmed.ncbi.nlm.nih.gov/23193625/ вернутьсяter Borg S, Verlaan S, Hemsworth J, et al. Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review. Br J Nutr. 2015;113(8):1195–206. https://pubmed.ncbi.nlm.nih.gov/25822905/ вернутьсяJacob RA, Gretz DM, Taylor PC, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr. 1998;128(7):1204–12. https://pubmed.ncbi.nlm.nih.gov/9649607/ вернутьсяRampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003. https://pubmed.ncbi.nlm.nih.gov/11010943/ вернутьсяAmenyah SD, Hughes CF, Ward M, et al. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults – a systematic review and meta-analysis. Nutr Rev. 2020;78(8):647–66. https://pubmed.ncbi.nlm.nih.gov/31977026/ вернутьсяRampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003. https://pubmed.ncbi.nlm.nih.gov/11010943/ вернутьсяMathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39. https://pubmed.ncbi.nlm.nih.gov/20933124/ вернутьсяEaton SB, Eaton SB. Paleolithic vs. modern diets – selected pathophysiological implications. Eur J Nutr. 2000;39(2):67–70. https://pubmed.ncbi.nlm.nih.gov/10918987/ вернутьсяМетилентетрагидрофолатредуктаза, ключевой фермент фолатного цикла. – Примеч. ред. вернутьсяParkhurst E, Calonico E, Noh G. Medical decision support to reduce unwarranted methylene tetrahydrofolate reductase (MTHFR) genetic testing. J Med Syst. 2020;44(9):152. https://pubmed.ncbi.nlm.nih.gov/32737598/ вернутьсяLevin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016;25(5):901–11. https://pubmed.ncbi.nlm.nih.gov/27130656/ вернутьсяPorter K, Hoey L, Hughes CF, Ward M, McNulty H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients. 2016;8(11). https://pubmed.ncbi.nlm.nih.gov/27854316/ вернутьсяFriso S, Choi SW, Girelli D, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99(8):5606–11. https://pubmed.ncbi.nlm.nih.gov/11929966/ вернутьсяBailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C®T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S-53S. https://pubmed.ncbi.nlm.nih.gov/14608109/ вернутьсяLevin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016;25(5):901–11. https://pubmed.ncbi.nlm.nih.gov/27130656/ вернутьсяParkhurst E, Calonico E, Noh G. Medical decision support to reduce unwarranted methylene tetrahydrofolate reductase (MTHFR) genetic testing. J Med Syst. 2020;44(9):152. https://pubmed.ncbi.nlm.nih.gov/32737598/ вернутьсяSeitz HK, Matsuzaki S, Yokoyama A, Homann N, Väkeväinen S, Wang XD. Alcohol and cancer. Alcohol Clin Exp Res. 2001;25(5 Suppl ISBRA):137S-43S. https://pubmed.ncbi.nlm.nih.gov/15082451/ вернутьсяBailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C®T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S-53S. https://pubmed.ncbi.nlm.nih.gov/14608109/ вернутьсяGriswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/ |