Лучшие источники спермидина (в миллиграммах на 100-граммовую порцию, если не указано иное) 1. 9,7 мг: темпе[366], [367]. 2. 9,2 мг: грибы[368], [369]. 3. 9,2 мг: свиная поджелудочная железа (в 30 г)[370]. 4. 8,2 мг: натто (в 30 г)[371],. 5. 6,1 мг: манго (одна штука, 210 г)[372], [373]. 6. 5,9 мг: эдамаме[374], [375]. 7. 5,8 мг: зеленый горошек[376], [377]. 8. 5,7 мг: чеддер (выдержка один год, в 30 г)[378]. 9. 5,5 мг: чечевичный суп (1 чашка*)[379]. 10. 5,1 мг: соевые бобы[380]. 11. 4,4 мг: салат[381]. 12. 4,3 мг: полента[382]. 13. 4,3 мг: кукуруза[383], [384]. 14. 3,8 мг: соевое молоко (1 стакан)[385]. 15. 3,8 мг: мидии[386]. 16. 3,7 мг: брокколи[387], [388]. 17. 3,4 мг: говяжьи кишки[389]. 18. 2,9 мг: нут[390]. 19. 2,8 мг: цветная капуста[391], [392]. 20. 2,7 мг: сельдерей[393]. 21. 2,6 мг: желтый горох[394]. 22. 2,5 мг: зародыши пшеницы (1 ст. л.)[395]. 23. 2,5 мг: картофель фри[396]. 24. 2,4 мг: устрицы[397]. 25. 2,4 мг: чечевица[398]. 26. 2,4 мг: фасоль адзуки[399], [400], [401]. 27. 2,3 мг: печень угря (в 30 г)[402]. 28. 2,2 мг: руккола[403]. 29. 2,1 мг: попкорн (50 г)[404]. 30. 2,0 мг: фасоль[405]. Выше приведен исчерпывающий список практически всех продуктов питания, которые я смог найти и которые в среднем содержат не менее 2 мг спермидина на порцию. Обратите внимание, что я не ограничивал список ни доступностью, ни вкусовыми качествами (поскольку это зависит от конкретного человека), ни тем более полезностью. (То, что картофель фри и некоторые выдержанные сыры содержат большое количество спермидина, не означает, что дорога к долголетию вымощена картофелем фри с сыром.)
Следует также отметить, что этот список необязательно репрезентативен в масштабах всего населения. Например, зеленый горошек может быть источником спермидина номер один в США, даже если он находится на седьмом месте в этом списке[406]. Несмотря на то что в цельнозерновом хлебе содержится в 3 раза больше спермидина, чем в белом, люди, учитывая популярность последнего, могут получать из него в 14 раз больше спермидина. Более того, в одном из исследований, проведенных в Турции, белый хлеб даже был признан ведущим источником спермидина[407]. Продвигаясь вниз по списку «Лучшие источники спермидина», можно заметить, что соевые продукты занимают четыре из десяти первых мест. Темпе, завоевавший золотую медаль, обычно поставляется в упаковках по 250 г, и всего одна такая порция может полностью восполнить суточную потребность в 20 мг спермидина. Серебро досталось грибам. Интересно, что в обычных белых грибах содержание спермидина в 2 раза выше, чем в более «причудливых» грибах, таких как эноки или шиитаке[408]. (Метод приготовления грибов, по-видимому, не влияет на уровень полезного вещества в блюде[409].) Далее. За звание самого спорного источника борются свиная поджелудочная железа и натто – ферментированный соевый продукт, знаменитый своим противным запахом и липкой, тягучей консистенцией. Кстати, о вони – плод дуриана, который описывают как имеющий «запах, похожий на запах спермы»[410], является еще более концентрированным источником спермидина, чем манго[411]. Он попал бы в список, если бы я играл честно. (Объяснение того, почему я, признаюсь в крайней предвзятости, исключил дуриан из списка, вы можете прочитать в книге «Не сдохни!», где я рассказал о происшествии с дурианом.) Хотя яблоки и груши занимают лидирующие позиции в рационе людей[412], они не сравнятся с манго, в которых концентрация спермидина в среднем более чем в 10 раз выше[413]. В своих расчетах я использовал манго небольшого размера, но более крупные сорта опередят действующего чемпиона темпе[414]. Два крупных манго (примерно по 300 г – уже очищенные от кожи и косточки) могут восполнить суточную потребность в спермидине. В молоке спермидина практически нет, но бактерии в некоторых сортах созревшего сыра вырабатывают его в значительных количествах. Так, если в моцарелле его нет, то в голубом сыре может содержаться 1,1 мг спермидина на унцию[415]. И на 8-м месте списка – чеддер, созревавший не менее года[416]. Однако в целом в сыре содержится всего 0,6 мг спермидина[417], а в некоторых даже выдержанных сортах, таких как Гауда, созревающая в течение 6 месяцев, он вообще отсутствует[418]. В йогурте его тоже нет[419], что говорит о том, что его вырабатывают только определенные виды бактерий. В квашеной капусте, например, спермидина не больше, чем в свежей[420]. вернутьсяNishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/ вернутьсяOkamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/ вернутьсяKiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяKalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/ вернутьсяKalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/ вернутьсяKiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяNishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub вернутьсяNishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяCipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяNishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub вернутьсяKiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяCipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяKiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяNishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/ вернутьсяCipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/ вернутьсяKiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяKalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/ вернутьсяKiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/ вернутьсяKiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/ вернутьсяCipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/ вернутьсяCipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/ вернутьсяNishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub вернутьсяNishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяNishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/ вернутьсяKiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяZoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW, Meyskens FL. Development of a polyamine database for assessing dietary intake. J Am Diet Assoc. 2007;107(6):1024–7. https://pubmed.ncbi.nlm.nih.gov/17524725/ вернутьсяBuyukuslu N, Hizli H, Esin K, Garipagaoglu M. A cross-sectional study: nutritional polyamines in frequently consumed foods of the Turkish population. Foods. 2014;3(4):541–57. https://pubmed.ncbi.nlm.nih.gov/28234336/ вернутьсяNishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub вернутьсяReis GCL, Dala-Paula BM, Tavano OL, Guidi LR, Godoy HT, Gloria MBA. In vitro digestion of spermidine and amino acids in fresh and processed Agaricus bisporus mushroom. Food Res Int. 2020;137:109616. https://pubmed.ncbi.nlm.nih.gov/33233206/ вернутьсяPietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F, Kroemer G. Spermidine reduces cancer-related mortality in humans. Autophagy. 2019;15(2):362–5. https://pubmed.ncbi.nlm.nih.gov/30354939/ вернутьсяNishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/ вернутьсяEisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяAgricultural Research Service, United States Department of Agriculture. Mangos, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169910/nutrients. Published April 2018. Accessed February 10, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169910/nutrients вернутьсяNishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяSoda K, Binh P, Kawakami M. Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. NDS. Published online December 2010:1.; https://www.dovepress.com/mediterranean-diet-and-polyamine-intake-possible-contribution-of-incre-peer-reviewed-fulltext-article-NDS вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ вернутьсяOkamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/ вернутьсяAtiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/ |