Более массивные звезды в конце своей жизни сбрасывают свои оболочки не постепенно, а мгновенно, в виде взрыва большей части своего вещества. Этот взрыв называют сверхновой звездой. Чем больше масса звезды, тем сильнее процессы сжатия происходят в оставшейся после взрыва ядерной части звезды. Взрывы сверхновых звезд порождают разнообразные космические объекты. Во-первых, если масса исходной звезды соответствует от 1,4 до около 2,5 массы Солнца, тогда происходит уплотнение первичного солнечной вещество от диаметра приблизительно двух Солнц до около 10–20 км. В этих звездах под твердой оболочкой, пяти километровой толщины, располагается неизведанное вещество, плотностью превышающей плотность ядра атома. Такие объекты являются компактными нейтронными (кварковыми) звездами – пульсарами. Вокруг нейтронной звезды распространяется газ. В Галактике известно более 2 тысяч таких звезд. Следующим типом космического тела становятся звезды с солнечными массами от 2,5 до 3,5 солнечной. Остатки таких звезд подвергаются еще большему сжатию исходных химических элементов, до диаметра около 3 км. В результате возникают космические объекты, называемые «черная дыра». Черная дыра – относительно небольшой темный объект, обладающий настолько гигантским притяжением (массой гравитации), что свет из неё не может вырваться наружу. Она окружена сферой – горизонтом, из-за которого не проникает наружу никакое излучение. Рождение таких черных дыр сопровождается выбросом газовых туманностей. В том случае, если случается сверхновый взрыв очень массивной звезды (солнечной массой от 3,5 до около 4,5), тогда происходит прямой коллапс (сжатие) вещества, рождающий массивную черную дыру без всякого газа. Четвертым вариантом завершения первичной жизни звезды становится взрыв гипероновой (сверхмассивной) звезды, в результате которого в космосе остается только газ.
Ряд исследователей обоснованно утверждают, что весьма массивные звезды в конце своего звездного существования превращаются в «геоды» (GEODE, Generic Objects of Dark Energy), которые похожи на черные дыры, однако вместо сингулярности они содержат темную энергию. Геоды могут сталкиваться и увеличиваться. Существующая скорость расширения Вселенной может быть объяснена темной энергией таких геодов. К гипотетической темной энергии относится около 74 % массы Вселенной. Эта энергия является источником ускоренного расширения космического пространства.
При взрыве сверхновой звезды резко возникает огромное давление, которое приводит к тому, что в ядерных реакциях мгновенно образуется огромное количество нейтронов. Их поток так плотен, что даже самые короткоживущие новообразованные радиоактивные ядра не успевают распасться до того, как в них вбиваются все новые и новые нейтроны. Нейтроны в ядрах превращаются в протоны, тем самым создавая новые, более тяжелые элементы. Этот процесс синтеза ядер отличается от предшествующего и называется r-процессом. Совсем недавно считалось, что взрыв сверхновых образовал все более тяжелые атомные ядра середины и конца Периодической системы элементов Д.И. Менделеева. Однако в последнее время наблюдения показали, что слияние двух нейтронных звезд сопровождается взрывом, названным килоновой звездой. В процессе такого взрыва протекает r-процесс, создающий самые тяжелые элементы. По результатам этих исследований ученые пришли к выводу, что именно килоновые звезды являются основным источником наиболее тяжелых элементов во Вселенной.
Взрыв сверхновой или килоновой звезды срывает внешнюю оболочку вместе с накопившимися в ней химическими элементами, результатами деятельности нуклеосинтеза. Эти продукты эволюции звезды разлетаются вокруг, образуя огромное облако газа и пыли, а также обогащая ближайшие газопылевые скопления. Такие скопления газа и пыли являются родиной звезд следующих поколений. На протяжении существования Вселенной миллиарды сверхновых и килоновых звезд заполняли космическое пространство всеми самыми тяжелыми химическими элементами, вплоть до 94-ого элемента – плутония. Звезды последующих поколений, с самого начала содержат в своем составе, как и в окружающем их газопылевом облаке, примесь тяжелых элементов, образованных звездами-предками. Каждая космическая туманность (совокупность огромных облаков межзвездного газа и пыли), подвергаясь воздействию взрывов последующих поколений звезд, всё больше обогащалась тяжелыми элементами, в частности железом. Новая туманность отличалась от предыдущей (более древней), меньшей долей водорода, но большей железа. Например, Солнце – звезда третьего поколения состоит не только из водорода и гелия, но в малых количествах из множества тяжелых элементов вплоть до марганца и других. Люди заметили, что через каждые 100–200 лет на ночном небосводе внезапно вспыхивали яркие звезды – сверхновые, сияние которых быстро ослабевало. Так что, процесс производства тяжелых элементов в обозримой части Вселенной продолжается.
Вновь образованные химические элементы по мере уменьшения температуры газопылевого облака соединялись во множество молекул. После появления звезд одними из ранних соединений были вода (H2O), аммиак (NH3), метан (CH4), монооксид углерода (CO), диоксид углерода – углекислый газ (CO2). Продолжавшееся снижение температуры и повышение концентрации химических элементов делало возможным соединение тяжелых химических элементов в микроскопические твердые кристаллы. Первыми «звездными» минералами-пылинками во Вселенной, вероятно, были крошечные кристаллы чистого углерода в форме алмаза и графита. Вслед за ними возникли соединения из магния, кальция, азота, алюминия и кислорода: корунд (алюминий плюс кислород, яркие цветные образцы которого люди считают драгоценными камнями: рубинами и сапфирами) и более десятка других известных нам полезных ископаемых. Эти химические соединения в форме космического газа и пыли со временем становились составной частью планет и живых организмов.
Многие миллиарды сверхновых звезд синтезировали значительные объемы очень тяжелых химических элементов, однако доля этих элементов относительно огромнейшего объёма водорода во Вселенной остаётся ничтожно малой. Современный химический состав Вселенной очень мало изменился от начального и на 74 % представлен водородом. Гелия содержится 24 %, кислорода 1 %, углерода 0,5 %, все остальные химические элементы в сумме составляют лишь 0,5 %. Несмотря на малую долю кислорода, углерода и более тяжелых элементов, без них не было бы Земли, воздуха и человеческих тел. По словам кембриджского астрофизика Мартина Риса: «Мы – звездная пыль, пепел давно умерших звезд».
1.4. Галактическая (Млечная) развилка эволюции природы на пути к человеку. Около 13,5 миллиардов лет назад
Галактическая развилка эволюции природы на пути к человеку случилась приблизительно через 300 млн. лет после Большого взрыва, когда около 13,5 млрд. л.н. вспыхнули первые звезды нашей Галактики. Этот возраст уточнен по данным о возрасте недавно обнаруженной в Галактике малой звезды, о которой упоминалось выше.
Млечный путь изначально отличался большей массой относительно соседних скоплений звезд, поэтому постепенно их поглотил. Начав свое формирование с относительно небольшого диска, наша Галактика все время расширяется в направлении от центра. Значительное наращивание Галактики произошло приблизительно к рубежу около 10 миллиардов л.н., когда она поглотил около 50 близлежащих карликовых галактик и огромную массу межгалактического газа, представленного главным образом водородом. К этому времени наше звездное скопление набрало объем около 1,5 триллиона масс Солнца и достигло достаточно крупных размеров: диаметр 100 000 световых лет при толщине в несколько тысяч (один световой год равен почти 10 триллионам километров). Мчащаяся в пространстве она преобразовалась в одну из рядовых, быстро вращающихся спиральных галактик с двумя рукавами.