Литмир - Электронная Библиотека
Содержание  
A
A

К рубежу 5,6 млрд. л.н. завершился синтез тяжелых элементов в звезде Матернитэ, и наши гиды приобрели форму тех элементов, в составе которых находятся до настоящего времени. Прекращение термоядерной реакции означало конец противодействию гравитации, произошел гравитационный коллапс и последующий ядерный взрыв звезды в качестве сверхновой. Почти мгновенно выделилась гигантская энергия, вызвавшая синтез стабильных и радиоактивных элементов тяжелее железа. Все созданные элементы с огромной скоростью были выброшены на гигантские расстояния. Сброс внешних слоев Матернитэ дополнил гигантскую молекулярную Дозвездную туманность новой порцией элементов. Эта туманность стала обладателем полного комплекта химических элементов, среди которых были Гидрожен, Оксижен, Нитрожен, Карбовеж, Карбомал, Ферум и Флюор. Преобладающим продуктом в оболочках звезды Матернитэ были углерод и кислород. Важно, что эта сверхновая обогатила Дозвездную туманность именно кислородом, который очень активно соединяет большинство элементов. Если бы не было кислорода, не возникло бы большинство известных минералов и не образовались бы все живые организмы, по крайней мере, на Земле. Особо следует отметить появление в рассматриваемой части Галактики ядер фосфора, среди которых был и Флюор. Этот элемент является редким гостем во Вселенной, но весьма необходимым для белковых форм жизни. Не случись в окрестностях будущей Солнечной системы в подходящий момент взрыва сверхновой звезды, не было бы нашей звёздной системы, и не возникла бы Земля с известными нам формами жизни.

Постепенно вещество Дозвездной туманности начало остывать и распределилось по нескольким газопылевым облакам. Положение одного из облаков пришлось на ту часть Галактики, где возникнет Солнечная система. Это протосолнечное облако c остывшим веществом стало исходным материалом для нашей звезды и планетной системы. По мере охлаждения облака возникли благоприятные условия для создания сложных химических веществ. Ещё до формирования Солнца состав газопылевого облака был довольно разнообразным. Конечно, главным компонентом были молекулы водорода (H2). Кроме молекул водорода, а также атомов и ионов различных элементов присутствовали первые простейшие молекулы водорода с углеродом и азотом, а также наиболее стабильная форма углерода – окись углерода (угарный газ – СО). В благоприятных условиях протопланетного облака происходило соединение атомов в удивительный набор молекул. Сформировались вода (Н2О), метан (простейший углеводородный газ – СН4) и углекислый газ (СО2). Также появился дейтерий, который является стабильным изотопом водорода, необходимым для синтеза более тяжелых элементов. Возник аммиак (нашатырь), представляющий собой газообразное соединение азота и водорода – NH3. В протопланетном облаке присутствовали молекулы спирта, органические кислоты (муравьиная и синильная), возможно белки и некоторые другие соединения.

При этом окись углерода, углекислый газ, метан и вода, т. е. соединения углерода с кислородом и водородом, а также водорода с кислородом оказались наиболее устойчивыми в очень разреженном космическом пространстве. Здесь же существовали рожденные в атмосфере звезд твердые пылинки из графита, тугоплавких соединений кремния, железа и прочих кислородсодержащих минералов. Присутствовали также, образованные в процессе взрыва, мелкие кристаллики алмазов. Твердые пылинки обзаводились оболочками из атомарного и молекулярного водорода, углерода, азота, кислорода. Пылинки в протопланетном облаке представляли собой совокупность тяжелых кристаллов и льда. Эти вещества формируются при значительном остывании протопланетного облака – до температур ниже 150°К. В таком, довольно холодном протопланетном облаке химические соединения существуют в трех формах. Во-первых, в виде газов представлены такие наиболее летучие компоненты, как водород, гелий, сероводород. В форме ледяных кристаллов выглядели вещества средней летучести – вода, метан и некоторые другие. В тяжелых кристаллах сконцентрировались нелетучие вещества – щелочи, нерастворимые основания. До этого температурного раздела, когда космическое пространство было более прогретым (более 150°К), химические вещества существовали в форме ледово-газового конденсата (например, в ледовой фазе – метан, вода, а в газовой фазе – водород, гелий).

Важнейшая роль Галактической развилки заключалась в том, что она создала предпосылки для накопления в определенном месте и в нужное время такого газопылевого облака, из которого возникла Солнечная система, включавшая звезду оптимального объёма и Землю, благоприятную для зарождения жизни и появления человека. Судя по современным сведениям о химических соединениях в Галактике, в протосолнечном облаке присутствовало около 200 основных видов молекул и плюс несколько сотен их изомеров[6]. Представлены они как простыми молекулами из 2-х атомов (например, самый распространенный во Вселенной – молекулярный водород – H2) или из 3-х атомов (вода – H2O, которой много в космосе), так и сложными – из разного количества атомов, вплоть до 13-ти атомов.

Протосолнечное газопылевое облако, вращаясь и сжимаясь, приобретало линзовидную форму и, наконец, преобразовалось в диск будущей Солнечной системы. Все братья-водороды оказались в относительной близости друг от друга в этом протосолнечном диске. Здесь им предстояло сменить форму своего состояния, войдя в состав более сложных молекул и минеральных агрегатов.

1.5. Солнечная развилка эволюции Галактики. 4,571 миллиардов лет назад

В нашей Галактике эпоха формирования Солнечной системы совпала со временем образования многих других звездно-планетных систем. Таким образом, природа реализовала многовариантность эволюции галактических форм движения материи. Возможно, в какой-то из звездных систем возникли планеты с благоприятными условиями для появления живых организмов. Но в рамках нашего обзора мы рассматриваем только тот маршрут эволюции природы, который привел к появлению человечества. Почему человеческая траектория эволюции прошла через Солнечную систему? Сравнение Солнечной системы с множеством выявленных планетных систем свидетельствует о том, что наш звездный дом во многом нетипичен. Так, образование Солнца и планет осуществилось на обочине Галактики, в зоне её обитаемости, где существуют необходимые условия для появления жизни и безопасного эволюционного усложнения живых организмов. В Млечном пути зона обитаемости простирается в форме кольца вокруг галактического центра. Внутренняя граница зоны отстоит от ядра Галактики на расстоянии 12 000 световых лет, а внешняя – 32 000 световых лет. Галактическая зона обитаемости характеризуется, прежде всего, такими факторами, как: значительная удаленность от ядра галактики; пониженное губительное излучение из центральной области галактики; относительно большие расстояния между звездами; малая частота катастрофических взрывов сверхновых звезд; высокое содержание тяжелых элементов, обеспечивающее формирование землеподобных планет и др.

Благоприятным оказалось не только место создания, но и время формирования нашей планетной системы – когда здесь было сконцентрировано достаточное количество тяжелых элементов для образования планет земного типа. В протосолнечном облаке содержание тяжелых химических элементов (например, на Солнце – 0,044 %), значительно превышало долю таких элементов не только в Млечном пути, но – в обозримой Вселенной (0,011 %). Такой состав вещества оказался очень удачным для человечества. Удачным космическим фактором для появления человечества стало возникновение водородной стены, которая отделяет Солнечную систему от окружающего межзвездного пространства (вещества). Эта стена находится на границе, где скорость солнечного ветра (частиц, преимущественно гелия) снижается до нуля. На этой границе частицы нашей звезды взаимодействуют с межзвездным водородом. В результате здесь возникает горячая плазма с температурой 30–50 тысяч градусов Цельсия. Эта плазменная стена предохраняет Солнечную систему от губительного влияния космического излучения. Не будь этой своеобразной оболочки вокруг нашей системы, все живое погибло бы на Земле.

вернуться

6

Изомеры – хим. соединения, имеющие одинаковый хим. состав и молекулярную массу, но различающиеся строением молекул, физ. и хим. свойствами. Свойства изомеров зависят в основном от структуры внешней электронной оболочки. Изомер, несмотря на одинаковые составляющие атомы, имеет отличающийся от основной молекулы запах, другой вкус, другой цвет, другие реакции.

9
{"b":"901467","o":1}