Для начального периода эволюции нашей Галактики, как и других, еще достаточно молодых галактик, была характерна мощная активность формирования сверхновых звезд. Взрывы этих многочисленных звезд поставляли в галактики тяжелые элементы, служившие материалом для звезд следующего поколения. Потребовались еще более четырех миллиардов лет для того, чтобы накопился необходимый набор тяжелых химических элементов, достаточный для формирования Солнечной системы с планетой Земля, в которой зародилась и развилась жизнь.
Появление во Вселенной огромного числа галактик позволило природе эволюционировать по множеству направлений. Каждое из этих направлений брало начало от соответствующей развилки эволюции природы. Появление человека разумного в галактике Млечный путь свидетельствует о том, что поворот эволюции природы на той Галактической развилке, от которой началась формирование нашей Галактики, оказалось успешным для нас. Антропный маршрут продолжился в этой Галактике потому, что её ранее образование после Большого взрыва обеспечило необходимо длительное время для формирования Солнечной системы, для появления в ней Земли и для продолжительной эволюции этой планеты до состояния, обеспечивающего зарождение жизни и её развитие до разумных людей. Мы не знаем о достижениях природы по созданию разумных существ в других галактиках. Тем не менее, можем предположить, что в молодых галактиках не успели возникнуть благоприятные условия для появления разума. Конечно, галактическая развилка является только необходимым, но далеко не достаточным событием для формирования сознательных существ.
Важным моментом эволюции Млечного пути явилась наибольшая концентрация вещества в её центральной части под воздействием гравитационных процессов. Здесь вспыхнуло много гигантских звезд, которые очень скоро, за несколько миллионов лет, израсходовали на термоядерные реакции весь свой водород и взорвались сверхновыми звездами. На их месте остались нейтронные звезды, черные дыры и газопылевые туманности из химических элементов тяжелее водорода. Наиболее крупная из черных дыр поглотила ближайшие нейтронные звезды и относительно небольшие черные дыры, а также окружающие газопылевые скопления. При слиянии этих объектов образовалась сверхмассивная черная дыра – Стрелец А, масса которой эквивалентна четырём миллионам масс Солнца. Такая значительная масса обеспечивает её мощнейшей силой притяжения. Вокруг этого центра тяготения вращаются все звездные системы Млечного пути. За время своего существования Млечный путь сформировал приблизительно 200 миллиардов звезд и созвездий, более тысяч обширнейших газовых облаков, скоплений и туманностей. Интересно, что обычное вещество, представленное всеми перечисленными звездами и прочими газово-пылевыми образованиями, плюс массивнейшая черная дыра в центре нашей Галактики, составляет только несколько процентов от общей массы. Преобладающая доля массы Млечного Пути сосредоточена в темном веществе и темной энергии.
Млечный путь вращается вокруг своей оси, проходящей через сверхмассивную черную дыру, перемещаясь при этом во Вселенной со скоростью 600 км в секунду. В этом сонме беспрестанно движущихся звезд мчится наша Солнечная система на скорости 230 км в секунду. Земля добавляет в эту сложную иерархическую карусель перемещения разноуровневых объектов свой путь вокруг Солнца с темпом 30 км в секунду.
Так уж случилось, что наши гиды-путешественники: Карбовеж, Карбомал, Флюор, Ферум, Гидрожен, Нитрожен и Оксижен не участвовали в начале формирования Млечного пути, поскольку находились на значительном удалении. До встречи с Млечным путем они путешествовали в межзвездном пространстве и были свидетелями того, как Вселенная катастрофически быстро разрасталась и усложнялась, рождая новые виды и формы вещества: повсюду зажигались многочисленные звезды, многие из которых через несколько миллионов лет, сгорая, становились сырьем для новых звезд. Обычное вещество под гравитационным воздействием темного вещества собиралось в галактики. Крупные галактики становились центрами галактических скоплений. Всё вещество распределилось в виде вселенской сети, погруженной в вездесущую темную энергию. Наши странники пока избежали испытания звездным пеклом. Плотность вещества в их среде обитания была настолько низкой, что частицы, способные изменить их судьбу, проносились мимо на большом расстоянии. Гидрожен, Оксижен и Нитрожен продолжали оставаться водородом, а Карбовеж, Карбомал, Флюор и Ферум – гелием.
Судьба преподнесла им немало испытаний. Так, на период с 11,7 до 11,3 миллиарда л.н. пришлась активизация мощных источников ультрафиолетового излучения во Вселенной, в роли которых выступали квазары – активные сверхмассивные чёрные дыры в ядрах галактик. Квазары повысили температуру межзвёздного водорода и гелия от 10 до 22 тысяч °C. Это стало причиной реионизации водорода и гелия (повторного образования ядер из атомов), т. е. потери электронов у всех атомов. В результате Карбовеж, Карбомал, Флюор, Ферум преобразовались из атомов в ядра гелия, а Гидрожен, Нитрожен и Оксижен – в ядра водорода. Такое состояние вещества затруднило сжатие (коллапс) межгалактического газа, что прервало формирование малых галактик приблизительно на 500 миллионов лет и значительно замедлило формирование новых поколений звёзд. Малые галактики «рассыпались», оказались не способными удержать ранее собранный ими газ, и тот улетучился вновь в межгалактическое пространство. Так и наши гиды, побывав какое-то время в составе небольшой галактики, продолжили путешествовать в виде ядер химических элементов в составе межгалактического газа. Последующее остывание межзвездной среды привело к новому преобразованию ядер в атомы, и процесс формирования малых галактик возобновился. Ядра гелия – Карбовеж, Карбомал, Флюор, Ферум преобразовались снова в атомы. В этом состоянии они вместе с атомами водорода – Гидроженом, Нитроженом и Оксиженом оказались в том газопылевом облаке, из которого сформировалась карликовая галактика Кракен (Kraken- с англ. «морское чудовище»). Около 11 млрд л.н. Млечный путь захватил эту галактику, разорвал её в клочья и включил в свою структуру её звезды и межзвездное вещество.
Таким образом, Гидрожен, Оксижен, Нитрожен, Карбовеж, Карбомал, Флюор и Ферум в составе галактики Кракен прибыли в Млечный путь. Попав в нашу Галактику, братья – водородики очутились в новых, весьма динамично меняющихся космических условиях. В этом гигантском, вращающемся газопылевом диске они путешествовали около 5,3 млрд. лет. Наверное, так и продолжали бы существовать гиды-водороды в прежней форме в межзвездной среде, если бы карликовая галактика Стрелец не пересекла диск нашей Галактики около 5,7 миллиардов л.н. Внедрение этого звездного скопления в диск Млечного пути произошло в удаленной части одного из рукавов Галактики, относительно не далеко от того места, где ныне существует Солнечная система. Скорее всего, гравитационное воздействие карликовой галактики на газопылевое облако стало причиной запуска механизма формирования массивной звезды. Эта протозвезда вобрала в себя окружавшие её газ и космическую пыль. Братья—водородики оказались вовлеченными в поток вращение вещества вокруг звезды. Новое положение стало судьбоносным для наших гидов. Эта звезда-гигант, которую назовём «Матернитэ» (Родительница), первоначально состояла почти целиком из водорода, гелия было совсем немного, не говоря уже о других элементах. В результате уплотнения вещества в недрах звезды создалось огромное давление и гигантские температуры, что «зажгло» термоядерные реакции преобразования водорода в гелий. Когда был израсходован весь водород, реализовались процессы непосредственного образование из ядер гелия ядер углерода и кислорода. Вслед за ними термоядерные реакции в Матернитэ последовательно синтезировали все химические элементы до железа включительно. Конечно, среди них были интересующие нас азот, фосфор, железо. Таким образом, Карбовеж и Карбомал приобрели форму углерода (С). Вернее сказать, Карбовеж и Карбомал заняли свои места в ядрах шестипротонных атомов углерода. Мы условно считаем, что они превратились в углерод. На самом деле, они были использованы для построения сложных ядер химических элементов в качестве единичных протонов. Оксижен стал кислородом (O), точнее говоря, вошел в состав атома кислорода, т. е. занял свое место среди восьми протонов в ядре. Нитрожен из водорода «превратился» в азот, т. е. внедрился в семипротонное ядро атома азота (N), соединившись с шестью другими подобными водородами-протонами. Флюор внедрился в ядро 15-ти протонного атома фосфора (P). Ферум «стал» железом, самым тяжелым элементом среди своих братьев – космических гидов. Он вошел в ядро 26-ти протонного атома железа (Fe). Только Гидрожен остался, как и прежде, водородом, поскольку пребывал в верхней оболочке звезды, где пониженная температура сберегла его от термоядерной реакции.