Границы плит стали зонами раздвига, надвига, поддвига или горизонтального смещения одних плит относительно смежных. Сформировались три типа границ между плитами: 1- рифт срединного хребта (зона спрединга), 2- зона столкновения (зона субдукции) и 3- зона сдвига (трансформный разлом)[32]. Вдоль этих границ проявились и происходят до сего времени максимальные тектонические, вулканические и сейсмические явления. В рифтовых зонах срединных хребтов плиты раздвигаются, и пустоты возникающих трещин заполняются расплавленной базальтовой магмой, всплывающей из астеносферы. Конвекционные течения вещества в астеносфере растаскивают плиты в стороны от осей срединных хребтов.
В зонах раздвижения плит, т. е. на участках распространения коры сухого океана, а также на прилегающих участках распространения первичного базальтового слоя приблизительно через 110 млн. лет после начала активной плитной тектоники возникнут океаны (см. "Океаническая развилка, 4,27 млрд. л.н."). В зонах субдукции (сближения) плит одна из них погружается под другую, а если они сталкиваются, тогда обе сминаются, образуя горную цепь. После возникновения океанов в участках распространения гор будет формироваться материковая (континентальная) кора (см. Континентальная развилка, 4,2 млрд. л.н.). По трансформным разломам происходит сдвигание (скольжение) плиты относительно смежной. Кроме того, даже внутри плит происходят такие явления, как: долговременные базальтовые магматические извержения в некоторых районах, называемых горячими точками, а также грандиозные излияния расплавов, формирующих траппы на континентах и океанические плато в океанах. Перечисленные проявления динамики твердой корово-мантийной оболочки являются разными характеристиками глобальной тектоники литосферных плит, о которой уже было упомянуто выше. Конечно, в течение первых 200–400 млн. лет после начала тектоники плит (около 4,38 млрд. л.н.), кора была тоньше и вязкость мантийных конвекционных потоков непосредственно под корой была намного ниже той, которые сформировались в последующем. Поэтому в этот начальный период динамика литосферы характеризовалась относительно низкой активностью. Тем не менее, тектоническая активность оказалась достаточной, чтобы обеспечить некоторую дифференциацию рельефа планеты, необходимую для образования океанов разной глубины, морей, озер и речных потоков, а также, чтобы создать необходимые условия для появления зон генерации континентальной коры.
2.3.3. Гидрожен – в горячей атмосфере, Оксижен – в литосферном блоке. Карбомал, Карбожен с Нитроженом и Флюор с Ферумом мчатся вокруг Солнца
После Литосферной развилки, Гидрожен, прибывший на Землю практически одновременно с образованием Луны, продолжал парить над Землей в составе Гидроженной водяной молекулы, поскольку температура поверхности планеты еще оставалась очень горячей (500°C – 300°C). Вся постоянно выделявшаяся из недр вода всё ещё находилась в парообразном состоянии. Огромные объемы пара превратятся в жидкую воду после снижения температуры ниже точки кипения воды. При существовавшем тогда атмосферном давлении в пределах около 3–4 атм. этот фазовый переход произошел, приблизительно при температуре поверхности планеты около 250–200°C около 4,27 млрд. л.н.
Перидотитовый твердый слой мантии, который стал пристанищем Оксижена, после Литосферной развилки перекрылся базальтовым слоем коры. Разбитие базальтовой литосферы на плиты определило нахождение кристалла Оксиженного форстерита в одном из океанических блоков. С этим литосферным блоком наш кислородный гид отправился в дрейф по астеносфере.
Карбомал, Карбожен с Нитроженом, как и Флюор с Ферумом в своих персональных астероидах (Карбомалном, Нитроженном и Ферумном) продолжают кружить вокруг Солнца на орбитах между Марсом и Юпитером. В их судьбе мало что изменится на протяжении еще около 300 млн. лет, до Пребиотической развилки, когда они прибудут на Землю.
2.4. Океаническая развилка эволюции Земли. Около 4,27 миллиарда лет назад
На протяжении около 200 млн. лет после Литосферной развилки тепловая история планеты оставалась в границах этапа «Раскалённая Земля». Планету продолжала укутывать третья – Мезокатархейская водно-азотно-углекислая атмосфера. В этой атмосфере происходило накопление колоссальной массы паров слабых водных растворов угольной и некоторых других кислот. К рубежу ~4,27 миллиарда л.н. снижающаяся температура достигла стабильных значений существования жидкой воды, и весь водяной пар в атмосфере конденсировался, обрушившись продолжительными проливными дождями угольной кислоты на твердый черный базальтовый слой планеты. Поверхность Земли хотя и охладела в значительной степени, но все еще оставалась довольно горячей (~200°C). Рельеф планеты в ранней половине катархейской эры (4,54-4,2 млрд. л.н.) был довольно пологим. Унылые базальтовые равнины с относительно неглубокими понижениями осложнялись не высокими вулканическими постройками в форме конусов или возвышенностей иных конфигураций. Кроме того, между литосферными блоками и в некоторых других местах тектонических напряжений формировались протяженные разломы, которые выделялись на земной поверхности в форме провалов и/или уступов. Отрицательными формами рельефа – потенциальными естественными вместилищами для озер и морей были тектонические прогибы и пологие впадины на участках нового образования базальтового слоя, т. е. на коре «сухого океана», да кратеры разного диаметра и глубины от разнокалиберных метеоритов и астероидов.
Кислая вода многовековых дождей мощными потоками стекала по сухой и очень горячей земной поверхности в низкие участки базальтового рельефа Земли. Формировалась система стока, речная сеть и возникали первые водоемы. Вода на своем пути растворяла щелочные породы своих русел. С суши переносились в первичные водоемы обломки разрушенных горных пород и извлеченные их них химические элементы: прежде всего натрий, а также магний, стронций, калий, кальций, литий и др. Содержание этих катионов[33] в морской воде соответствует распространенности их в породах земной коры. Однако, содержание основных анионов, особенно хлора и брома, в водоемах значительно превышает возможности горных пород. Ученые считают, что все катионы попали в морскую воду в результате их извлечения из горных пород, а анионы (хлор, бром и др.) прибыли в воду непосредственно из мантии при её дегазации.
Первичная морская вода была слабокислотной (pH[34] от 5 до 6,5) и малосолёной, похожей по составу на пресную воду. Такой состав воды в морях обусловлен быстрым стоком, не позволявшим значительно обогатиться минеральными веществами. Кислый раствор, находясь в первичных водоемах, растворял омываемые изверженные породы. На первом этапе размывались породы твердого базальтового слоя. На протяжении последующих сотен миллионов лет водные бассейны постепенно насыщались элементами, переходившими из новообразованных океанической и континентальной земных кор: натрием, магнием, стронцием, калием. Кроме того, за счет дегазации мантии в воду поступали хлор, бром и другие анионы. Интересно проследить обогащение океанов катионами кальция (Са2+) и магния (Mg2+), наряду с комплексным анионом карбоната (СO32-), в состав которого входит катион углерода (С4+) и три аниона кислорода (O2-). Когда концентрация этих элементов в морской воде достигла точек растворения кальцита (СаСО3) и доломита (CaMg[CO3]2), на дно бассейнов начали осаждаться данные карбонаты. Выпадение из воды соединений углекислоты привело к последующему извлечению морской водой из атмосферы новых порций углекислого газа. Океан выводил «излишки» углерода из атмосферы в осадок морей и океанов. Огромные массы соединений углерода в форме мощных толщ карбонатных пород на сотни миллионов лет захоронялись в недрах планеты. Океан стал естественным регулятором, как состава атмосферы, так и ее температуры. Гидросфера включилась в кругооборот вещества и энергии между всеми оболочками Земли.