Литмир - Электронная Библиотека
Содержание  
A
A

Бывает ли подвеска «горячей»?

А теперь поговорим о горячей подвеске. Тут дело, конечно же, не в нагревании. Если мы просто будем нагревать груз или удерживающую его в подвешенном состоянии обмотку, то мало чего добьемся. Эффект нагревания здесь получается как бы сам по себе; это побочный эффект.

История горячей подвески восходит к 90-м годам XIX в., когда американский изобретатель Элиу Томпсон продемонстрировал свой знаменитый опыт. Суть опыта состояла вот в чем. На цилиндрический электромагнит с сердечником из железных проволочек изобретатель надел алюминиевое кольцо, а затем подключил к обмотке переменный ток достаточно высокой частоты. При этом кольцо взмыло вверх над сердечником и улетело в сторону (рис. 342). Какая же сила подбросила кольцо вверх?

Удивительная физика - pic_384.png
Рис. 342. Опыт Э. Томпсона:

1 – штепсельная вилка; 2 – алюминиевое кольцо; 3 – электромагнит

При изменении направления тока в обмотке электромагнита меняется его полярность, а стало быть, резко изменяется как по величине, так и по знаку магнитная индукция в сердечнике. Если поместить такой электромагнит вблизи замкнутой обмотки из проводника, в ней возникнет индукционный (наведенный) ток. Он, в свою очередь, создает свое собственное магнитное поле, противодействующее магнитному полю электромагнита.

А алюминиевое кольцо – та же самая обмотка, только из одного витка.

И электромагнит стремится поскорее вытолкнуть магнитное поле кольца из своего собственного, а вместе с ним и само кольцо. Что и получилось в опыте Э. Томпсона.

При этом переменный ток совсем не так уж необходим. Индукционный ток можно вызвать движением проводника возле полюса магнита. Например, в электросчетчиках алюминиевый диск, вращаясь между полюсов сильного магнита, тормозится из-за индукционных (вихревых) токов, возникающих в диске.

Опыт с диском можно представить как напоминающий опыт Э. Томпсона. Раскрутим медный или алюминиевый волчок и приблизим к нему сбоку достаточно сильный магнит (рис. 343, а). Волчок тут же отодвинется от магнита и будет упрямо уклоняться от него, откуда бы мы ни подносили магнит. Более того, отталкивание магнитных полей магнита и индуцированного тока может существенно превысить силу притяжения магнитом ферромагнитного тела, хотя бы того же волчка. Если мы достаточно сильно раскрутим уже не алюминиевый, а железный волчок, то при высокой частоте вращения он будет отталкиваться от магнита, а при малой – притягиваться к нему. Замечено, что металлический маховик, вращающийся над магнитом, как бы теряет в весе (рис. 343, б).

Удивительная физика - pic_385.png

А теперь о побочном эффекте нагревания подвешиваемых тел в такой подвеске.

На Всемирной выставке в Нью-Йорке в 1939 г. в павильоне «Чудеса техники» была показана эта удивительная горячая подвеска сковороды, тогда еще просто игрушка. Частота тока была всего 60 Гц – обычная промышленная частота тока в США (у нас в стране – 50 Гц), диаметр сковороды – 300 мм. Автор хоть и не был на этой выставке, так как родился как раз в год ее открытия, но установку такую видел и даже убедился, что взвешенная сковорода нагревается индукционным током. Такую установку автор видел в 50-х гг. ХХ в. у нас в стране в… цирке. Да, да, ее с успехом демонстрировал в цирке артист по фамилии Сокол, причем алюминиевая сковорода была самой обычной, только без ручки, а электромагнит был встроен в верхнюю часть… холодильника.

Эффект был поразительный: на сковороде, висящей в воздухе над холодильником (рис. 344), жарили яичницу и даже угощали ею зрителей! А потом эта игрушка стала работать в технике, причем оказалась очень перспективной. Сейчас с ней связывают будущее металлургии специальных сплавов. Дело в том, что при плавке некоторых металлов и сплавов недопустимо их соприкосновение с тиглем, в котором их обычно плавят, поэтому плавка в подвешенном состоянии оказалась поистине находкой при производстве таких сплавов, например сверхчистых или агрессивных, вступающих в реакцию с тиглем.

Установка для плавки металлов в подвешенном состоянии появилась впервые в 1952 г. и выглядела несколько иначе, чем описанная игрушка. Обмотки выполнены в виде верхней плоской и нижней воронкообразной катушек, питаемых током звуковой частоты – около 10 000 Гц. На нижнюю катушку помещали кусочек металла, который необходимо было расплавить, и включали ток. Металл всплывал между катушками и начинал разогреваться (рис. 345). Расплавившись, он принимал форму волчка и опускался. Расплавленный металл можно было, уменьшив ток, охладить, а затем дальнейшим уменьшением тока положить уже в твердом состоянии на нижнюю катушку.

Удивительная физика - pic_386.png

Так плавили алюминий, титан, серебро, золото, индий, олово и другие металлы, причем в атмосфере инертных газов, водорода и в вакууме. Особенно полезна такая плавка для титана, который в расплавленном состоянии легко входит в реакцию с материалом тигля.

Удивительная физика - pic_387.png
Рис. 345. Парение расплавленного металла в электромагнитном поле

Какие это поезда – летающие?

Летающие поезда считаются транспортом XXI в., работы над ними ведутся во всех развитых в техническом отношении странах. А все начиналось в 1910 г., когда бельгиец Э. Башле – простой рабочий-монтер, не получивший никакого специального образования, построил первую в мире модель летающего поезда и испытал ее. Э. Башле упорно работал над осуществлением своей идеи почти 20 лет. Конечно, для перевозки пассажиров его модель была мала, но все-таки произвела ошеломляющее впечатление на современников. Еще бы – 50-килограммовый сигарообразный вагон летающего поезда разгонялся до неслыханной тогда скорости – свыше 500 км/ч!

Магнитная дорога Башле представляла собой цепочку металлических столбиков с укрепленными на их вершинах катушками. Пока тока в этих катушках не было, вагон лежал на них неподвижно. Но после включения тока вагончик приподнимался над катушками и повисал в воздухе. Теперь его мог сдвинуть с места даже ребенок. Но толкать этот вагончик было не нужно – он разгонялся сам, тем же магнитным полем, на котором подвешен.

Летающий вагон Э. Башле вызвал сенсацию во всем мире, его называли чудом XX в. Во Франции решили применять вагончики Э. Башле вместо популярной тогда пневматической городской почты, в Англии собирались строить натурный образец дороги Э. Башле с крупными вагонами. Но потом работы прекратились, и о сенсационных когда-то проектах забыли.

Практически одновременно с Башле – в 1911 г. – профессор Томского технологического института Б. Вейнберг разрабатывает гораздо более экономичную подвеску летающего поезда. В отличие от Э. Башле Вейнберг предлагал не отталкивать дорогу и вагоны друг от друга, что чревато громадными затратами энергии, а притягивать их друг к другу обычными электромагнитами. Разумеется, дорога должна быть расположена сверху от вагона, чтобы своим притяжением компенсировать силу тяжести поезда.

Однако любой магнит, в том числе и электрический, если уж, притягивая, стронул тело с места, то обязательно притянет его к себе до соприкосновения. К счастью, электромагнит можно вовремя выключить, и тело остановится на любом, заранее заданном расстоянии от него.

Но летящий поезд Вейнберга был устроен хитрее. Железный вагон первоначально располагался не точно под электромагнитом, а несколько позади него. При этом электромагниты подвешивались на «потолке» дороги на всей ее длине с некоторым интервалом между ними.

Пуская ток в первый электромагнит, мы вызывали и подъем железного вагончика, и продвижение его вперед, по направлению к магниту. Но за мгновение до того, как вагончик должен был прикоснуться к электромагниту и прилипнуть к нему, ток выключался, и вагончик, продолжая лететь вперед из-за набранной им скорости, начинал снижать высоту. Тут включался следующий электромагнит, и вагончик, попадая в его магнитное поле, опять поднимался вверх, увеличивая скорость движения вперед. Так по волнообразной траектории вагончик «перебегал» от магнита к магниту, не касаясь их (рис. 346).

88
{"b":"88272","o":1}