Литмир - Электронная Библиотека
Содержание  
A
A

1 – электролитный насос; 2 – компрессор; 3 – цинковые элементы

Своеобразие этих батарей заключается в том, что они могут работать как в режиме аккумуляторов, так и в режиме обычных гальванических элементов, попросту «сжигая» – окисляя цинк в кислороде воздуха. Именно в этом случае цинковые аноды приходится заменять, но плотность энергии элемента при этом получается почти вдвое большей, чем у аккумулятора.

Но главнейшей проблемой электромобиля являются не сами аккумуляторы, а то, что для зарядки этих аккумуляторов просто не хватит мощности электростанций всего мира, ибо мощность двигателей всех автомобилей значительно превышает мощность всех электростанций. На электромобили можно перевести лишь незначительную долю автотранспорта, преимущественно в городах. Поэтому надо научиться вырабатывать электричество из топлива прямо на автомобиле (теперь уж его с полным основанием можно называть электромобилем). И эту задачу с успехом выполняют топливные элементы. Они бесшумно и экологически безвредно преобразуют химическую энергию топлива в электроэнергию с КПД, превышающим КПД электростанций.

Еще в XIX в. было замечено, что если в горячий раствор едкого кали опустить платиновые электроды и к одному из них медленно подавать водород, а к другому кислород, то на электродах появляется разность потенциалов. Платина играла роль катализатора реакции окисления-восстановления водорода и кислорода. Соединив электроды, ученые получали электрический ток (рис. 326). Ток вначале был невелик, и вся последующая работа над прямым преобразованием энергии топлива в электричество заключалась как раз в увеличении мощности этого процесса.

Удивительная физика - pic_367.png
Рис. 326. Схема работы топливного элемента

Ныне существует множество типов установок для преобразования энергии, называемых топливными элементами, электрохимическими генераторами, или, если они работают на водороде, водородными генераторами. Есть высокотемпературные (как горячие аккумуляторы) топливные элементы, а есть работающие и при комнатной температуре. Применяются также элементы с промежуточными температурами: 100—200 °С. Электролитами могут служить и щелочь, и кислота, причем в твердом и жидком виде.

Разнообразно и топливо, которым питаются такие элементы. Это газы (например, водород); жидкости – спирт, гидразин; твердые вещества – уголь, металлы. В качестве окислителя используют кислород, воздух, перекись водорода. КПД топливных элементов очень высок, он достигает 70 %, что, по меньшей мере, вдвое выше, чем у двигателей.

Как же все-таки работает современный топливный элемент? В во-дородно-кислородном элементе водород поступает на поверхность отрицательного электрода, а кислород – на поверхность положительного электрода. Газы эти доставляются к электродам по трубкам. Ионы водорода в процессе реакции окисления-восстановления соединяются с ионами кислорода, образуя обычную воду. Энергия химической реакции передается электродам в виде электрической энергии. Получаемая в топливном элементе вода удаляется оттуда через особый фитиль (рис. 327). Она настолько чиста, что ее можно использовать для питья и приготовления пищи. Так поступают, например, космонавты в длительном полете – на космических станциях тоже установлены топливные элементы. Это еще одно достоинство прямого преобразования топлива в ток.

Удивительная физика - pic_368.png
Рис. 327. Водородно-кислородный топливный элемент

Водородно-кислородные топливные элементы, если брать в расчет только массу топлива-водорода и кислорода, имеют громадную плотность энергии – около МДж/кг. Но ведь надо учитывать и массу самого устройства – топливного элемента со вспомогательным оборудованием. А это уже снижает плотность энергии до уровня обычных электроаккумуляторов – топливные элементы очень тяжелы. Лишь после многочасовой работы, когда будет израсходовано значительное количество водорода и кислорода, топливные элементы окажутся легче электрохимических аккумуляторов с тем же запасом накопленной энергии.

Плотность мощности у топливных элементов совсем мала, около 60 Вт на 1 кг массы, или втрое меньше, чем у горячих аккумуляторов. Для автомобилей это явно недостаточно.

Но если эту мощность накапливать, например, в маховиках (или супермаховиках), разгоняя их легким скоростным электромотором, то топливные элементы, развивая свою незначительную удельную мощность, смогут обеспечивать ею любой режим движения автомобиля. Ведь непосредственно к ведущим колесам мощность будет подаваться от маховика, который может развивать ее в неограниченных количествах. Трансмиссией в этом случае может служить механический вариатор, легкий и экономичный.

Конечно же, хотя бы в первое время заправка таких электромобилей на топливных элементах будет производиться обычным топливом – сжиженным газом, бензином или соляркой. Уже на самой машине это топливо будет проходить через конвертор, вырабатывающий из него водород, питающий топливные элементы. Кислород будет забираться из воздуха.

На наш взгляд, будущее энергетического агрегата автомобилей именно в использовании гибрида топливных элементов с накопителями энергии.

И работа над этим ведется уже сегодня.

МАГНЕТИЗМ МАГНИТА

Почему магнит называют магнитом?

Действительно, почему мы его так называем? А ведь как только раньше не пробовали именовать магнит! Древние греки – «особым камнем», «тем камнем», а также «геркулесовым камнем», то ли из-за его силы, то ли из-за того, что добывали этот камень близ города Гераклеи в Лидии. У греков было и другое название – «сидерит», в переводе – «алмаз». Но не подумайте, что это из-за твердости или красоты магнита. Просто алмаз сам был назван сидеритом благодаря чисто «железистому» блеску в необработанном виде, так же греки называли и мягкое железо. Греческое название сидерит происходило вследствие «склонности» магнита к железу, а может быть, и из-за того, что магнит первоначально добывали в копях железных руд.

Позже англичане, французы, испанцы, а затем и сами же греки обманулись этой двойственностью названия и положили в основу своих современных прозваний магнита алмаз. Так получились французское «аймант», испанское «пьедрамант», английское «адамант» и новогреческое «адамас». Правда, говорят, что французы при этом имели в виду не алмаз – адамас, а древнее китайское название магнита «чу-ши» или «нитши-чи», что означает «любящий камень». А на французском «аймант» – (произносится «эман») и есть «любящий».

Надо сказать, что весь Древний Восток наделял магнит свойством любить железо. Раз притягивает – значит, любит. И поэтому почти все восточные названия магнита берут начало от этого свойства – например, санскритское «тхумбака».

Итальянцы именовали магнит «каламита», и этим словом стали пользоваться в Румынии, Боснии и в той же Греции.

Удивительная физика - pic_369.png
Рис. 328. Естественные магниты: а – в «шлемах»; б – в оправе с магическим символом

Известно и старонемецкое название магнита: «зигельштейн» – «печатный камень». Вероятно, происходит оно из-за распространенного в древности обычая вырезать на природных магнитах различные магические фигуры и символы (рис. 328), а такие камни уже можно было использовать в качестве печаток. Великий ученый Исаак Ньютон носил даже перстень, где в качестве драгоценного камня присутствовал природный магнит необычайной силы. Возможно, что ученый и припечатывал им сургучные пломбы на письмах и документах… И, наконец, египтяне звали магнит костью Ора. Под именем Ор они имели в виду свойство Солнца восходить и заходить. Иначе говоря, Ор – это одно из божеств Древнего Египта, костью которого, как считалось, был магнит.

82
{"b":"88272","o":1}