Литмир - Электронная Библиотека
Содержание  
A
A

На нижней фотографии обе вазы и обе свечи кажутся одинаковыми, причем свечи одинаковой высоты с часами. При рассматривании через стереоскоп видна громадная разница в размерах и ваз, и свечей. Эти предметы намеренно были размещены на разных расстояниях от камер.

Можно обойтись здесь и без специального прибора, своим естественным стереоскопом – глазами. Для этого надо пристально глядеть в середину промежутка между двумя фотографиями, причем смотреть нужно как бы на предмет, расположенный дальше фотографии. Если у вас зрение нормальное и, более того, если вы к тому же молоды, то изображение после кратковременного раздвоения сольется, и вы увидите стереоскопическую картину (см. рис. 130, б).

Для тренировки стереоскопического зрения на рис. 131 помещены фигуры все возрастающей сложности, с которыми нужно проделать то же самое.

Удивительная физика - pic_159.png
Рис. 131. Для тренировки стереоскопического зрения две точки должны слиться в одну (а); изображение должно показаться: трубой, уходящей вдаль (б); телами парящими в пространстве (в); тоннелем или коридором, уходящим вдаль (г); должно дать полную иллюзию прозрачного стекла и воды в аквариуме (д)

Если почему-либо опыты с «естественным» стереоскопом не выходят, сделайте себе стереоскоп сами. Возьмите стекла от очков для дальнозорких («плюсовые») и закрепите их в оправе так, чтобы смотреть только через внутренние края стекол (т. е. межцентровое расстояние оправы должно быть очень большим для вас), а между изображениями поместите перегородку так, чтобы на правое изображение смотреть только правым глазом, а на левое – левым (рис. 132). Эффект будет достигнут!

Удивительная физика - pic_160.png
Рис. 132. Самодельный стереоскоп

Иногда хватает даже одной только перегородки, чтобы получить стереоскопическое изображение. Имея стереоскоп (хотя бы простейший), можно на опыте понять, что же такое блеск. Почему просто белая поверхность не кажется нам блестящей? Действительно, чем отличается матовая поверхность от блестящей, полированной? Тем, что матовая отражает свет во все стороны одинаково, а полированная – лишь в одном определенном направлении, в зависимости от направления падения света. Один глаз человека при этом получает больше отраженных лучей, чем второй. И мозг на основании опыта жизни подсказывает – вы смотрите на блестящий предмет!

А давайте перехитрим свой мозг и сделаем имитацию блестящего предмета, например драгоценного граненого камня на черном бархате. Поступим так, как учит нас знаменитый немецкий физик Герман фон Гельмгольц (1821—1894): «Когда на одной стереоскопической картине какая-нибудь плоскость изображена белой, а на другой – черной, то в соединенном изображении она кажется блестящей».

На рис. 133 изображены как раз две такие картинки. Взгляните на них через свой естественный стереоскоп, простейший (из очковых стекол с перегородкой) или настоящий прибор. Вы увидите блестящий драгоценный камень на фоне черного бархата!

Удивительная физика - pic_161.png
Рис. 133. «Стереоскопический» бриллиант

С помощью стереоскопа можно обнаружить подделку документов или даже банкнот. Надо поместить на одну сторону настоящий, подлинный, образец, а на другую, – в котором сомневаетесь. При взгляде через стереоскоп даже малейшие отличия одного от другого будут выглядеть как сильные смещения вперед или назад неточно выполненных знака, точки или штриха.

И наконец, как усилить стереоскопический эффект? Ведь известно, что чем дальше от нас предмет, тем меньше угол зрения и тем более плоскостная картина предстает перед нами. Все светила кажутся нам на небе как бы на одном расстоянии, а тем не менее какая колоссальная разница между удалением от нас планет и звезд!

В обыкновенных земных условиях удаление на сотни метров лишает нас объемной картины, и все удаленное приобретает плоский вид. Слишком уж мало расстояние между глазами – каких-нибудь 5 – 6 см, по сравнению с сотнями метров.

А если наши глаза «раздвинуть»? Конечно, не в буквальном смысле слова, а с помощью приборов? На рис. 134 показан полевой бинокль и ход лучей в нем. Объективы там можно раздвинуть больше, чем окуляры, которые приставляются к глазам, стеклянные призмы позволяют сделать это. И картина в такой бинокль предстает нам не только приближенной, но и гораздо более рельефной.

Еще больший эффект получается с помощью специальной стереоскопической зрительной трубы, используемой, например, артиллеристами (рис. 135). В такую трубу предметы, удаленные даже на 25 км, кажутся объемными. И можно достаточно точно определить расстояние до предмета (например, цели) и перелет с недолетом снарядов при обстреле.

Удивительная физика - pic_162.png
Рис. 134. Полевой бинокль и ход лучей в нем

А какая сказочная картина предстает перед наблюдателем при взгляде в такой прибор! Все вокруг выпукло, рельефно, ощутимо, до всего так и хочется дотянуться и потрогать! Если у вас есть знакомые артиллеристы, обязательно попросите их дать вам посмотреть в такую трубу!

Удивительная физика - pic_163.png
Рис. 135. Стереоскопическая зрительная труба

Можно ли видеть как рыба?

Сравнение с рыбой в зрительных способностях мало кого обрадует. Вот «соколиный глаз» – дело хорошее. А «рыбий глаз» – на это можно и обидеться. Но рыба прекрасно видит в воде, а всякий, кто нырял с открытыми глазами, знает, как вода искажает изображение.

Прежде всего вода «обманывает» зрение, даже если смотреть под воду снаружи. Ложка, опущенная в стакан с водой, кажется изломанной (рис. 136). Монета, лежащая на дне пустой чашки и не видимая сидящему за столом, как бы приподнимается и становится видимой, если в чашку налить воды. Этот опыт и схема, поясняющая его, приведены на рис. 137 (а и б). Все это происходит из-за преломления лучей света в воде. Чем больше показатель преломления среды, тем сильнее отклонения лучей света при переходе из воздуха (или вакуума) в эту среду – воду, масло, стекло и т. д.

Удивительная физика - pic_164.png
Рис. 136. Ложка в прозрачном стакане с водой
Удивительная физика - pic_165.png
Рис. 137. Опыт со «вспыливанием» монеты (а) и схема, поясняющая его (б)

Вот почему опасно людям, не умеющим плавать, особенно детям, доверять глазу при определении глубины воды с берега. Дно покажется приподнятым, вода мелкой, причем ошибиться можно почти на треть глубины. Кажется, что там можно стать на дно, а оно оказывается куда глубже. Хорошо, хоть это искажение действительной глубины испугает любителей нырять в незнакомых местах – глубина покажется им недостаточной и опасной. С лодки или низких мостков дно мелкого пруда или озера кажется вогнутым, так как только под собой мы видим истинную глубину. Чем дальше, тем более приподнятым кажется дно.

Преломляется луч света и при переходе из воды в воздух, но уже в другую сторону. Поэтому из-под воды внешний мир кажется также искаженным. Но самое главное то, что в воде наш глаз будет видеть очень плохо, как у сильно дальнозорких людей. То есть тех, которые носят очки с сильными «плюсовыми» стеклами. Или как человек с нормальным зрением, надевший очки с сильными «минусовыми» стеклами.

Почему это происходит? Дело в том, что показатели преломления воды и жидкостей внутри глаза – стекловидного тела и водянистой влаги – практически одинаковы и равны 1,34. Чуть выше этот показатель у хрусталика – 1,43, но этого недостаточно, чтобы глаз видел нормально. Преломления лучей при переходе из воды в глаз почти не будет (разве только чуть-чуть в хрусталике!), и глаз будет «работать» как сильно дальнозоркий.

39
{"b":"88272","o":1}