Рис. 170. Молекулы в жидкости и парах возле нее
Вспомним, что молекулы притягиваются друг к другу на расстоянии порядка нескольких молекулярных радиусов и отталкиваются на очень близких расстояниях. Силы притяжения, действующие на молекулу поверхностного слоя со стороны всех остальных молекул, дают равнодействующую, направленную вниз. Однако со стороны соседних молекул на данную молекулу действуют и силы отталкивания. Благодаря этому молекула и находится в равновесии. Правда, любая молекула участвует также в тепловом движении. Но для молекул жидкости это движение сводится к колебаниям около некоторых положений равновесия. Причем время от времени молекулы изменяют свои положения равновесия. На место молекулы, ушедшей в глубь жидкости, приходит другая и т. д.
В результате действия сил притяжения и отталкивания плотность жидкости в поверхностном слое меньше, чем внутри. В самом деле, на молекулу 1 (рис. 171) действует сила отталкивания со стороны молекулы 2 и силы притяжения всех остальных молекул (3, 4, 5). На молекулу 2 действуют такие же силы притяжения со стороны лежащих в глубине молекул и сила отталкивания со стороны молекулы 3. Но, кроме того, действует еще сила отталкивания со стороны молекулы 1. Она сближает молекулы 2 – 3. В результате расстояние между молекулами 1 – 2 в среднем больше расстояния между молекулами 3 – 4 и т. д., до тех пор пока не перестанет сказываться близость молекул к поверхности. Таким образом, молекулы поверхностного слоя находятся в среднем на бо2льших расстояниях друг от друга, чем молекулы внутри жидкости. Поэтому увеличение поверхности жидкости должно сопровождаться возникновением новых участков разреженного поверхностного слоя. А это требует совершения работы против сил притяжения между молекулами.
Рис. 171. «Растяжение» молекул поверхностного слоя: 1 – 5 – молекулы
Вот этим-то и объясняется поверхностное натяжение, которое «обнимает» жидкость, и поэтому в свободном состоянии она принимает форму, при которой для данного объема площадь поверхности минимальна. А такой формой является шар – сфера.
На границе с воздухом больше всего поверхностное натяжение у металлов. У расплавленного золота оно 1,1 Н/м (сила, отнесенная к единице длины края поверхностного слоя); у других металлов поменьше: у свинца – 0,45 Н/м, у ртути – 0,47 Н/м, у алюминия 0,52 Н/м. Для обычных жидкостей (кроме ртути) рекордсменом, пожалуй, является вода – 0,073 Н/м, еще меньше у керосина – 0,029 Н/м, у спирта – 0,023 Н/м и меньше всего у эфира – 0,017 Н/м.
Так что из жидкостей, кроме жидких металлов разумеется, вода сильнее всего склонна к «шарообразованию». Раствор мыла в воде несколько снижает поверхностное натяжение, но дает удивительное свойство образовывать пузыри. Сейчас для надувания пузырей существуют особые жидкости, но годится и раствор обычного хозяйственного мыла в дождевой, снеговой, или, в худшем случае, кипяченой воде. Чтобы пузыри держались долго, можно прибавить к мыльному раствору до трети его объема глицерина. Трубочку лучше всего взять керамическую, но можно и толстую соломинку, крестообразно расщепленную на конце. Подойдет и обычная бумажная трубочка. Теперь для лучшего понимания физики поверхностного натяжения жидкостей, а также для эстетического наслаждения попробуем выдуть экзотические пузыри.
Выдувать пузыри лучше всего так. Окунув трубочку в раствор, держат ее отвесно, чтобы на конце образовалась толстая пленка жидкости и осторожно дуют в трубочку. При этом пузырек наполняется теплым воздухом наших легких, который легче окружающего воздуха, и выдутый пузырь поднимется вверх.
Если сразу же удается выдуть пузырь диаметром в 10 см, то мыльный раствор хорош; в противном случае добавляют в жидкость еще мыла до тех пор, пока пузыри не будут достигать такого размера. Но это еще не все. Выдув пузырь, надо обмакнуть палец в мыльный раствор и постараться пузырь проткнуть. Если он не лопнет, то можно приступать к опытам, если же лопнет, надо прибавить еще мыла.
Проводить опыты с мыльными пузырями следует осторожно и спокойно. Освещение должно быть яркое, иначе пузыри не покажут своих радужных переливов. Вот несколько удивительных опытов с пузырями, описанных английским физиком Ч. Бойсом в его книге «Мыльные пузыри».
В мыльный пузырь можно поместить цветок или вазочку. На тарелку или поднос наливают мыльный раствор так, чтобы дно тарелки было покрыто слоем толщиной 2 – 3 мм; в середину кладут цветок или маленькую вазочку и покрывают стеклянной воронкой (рис. 172). Затем, медленно поднимая воронку, дуют в ее узкую трубочку, – образуется мыльный пузырь. Когда же этот пузырь достигает необходимых размеров, наклоняют воронку и осторожно высвобождают из-под нее пузырь. Тогда цветок или вазочка окажутся лежащими под прозрачным полукруглым колпаком из мыльной пленки, переливающейся всеми цветами радуги.
Вместо цветка можно взять, например, статуэтку, поместив на ее голове мыльный пузырь. Для этого надо предварительно капнуть на голову статуэтки немного мыльного раствора, а затем, когда большой пузырь, покрывающий статуэтку, будет выдут, проткнуть его и выдуть внутри него пузырь маленький.
Несколько пузырей можно поместить друг в друге. Из воронки, использованной в предыдущем опыте, выдувают большой мыльный пузырь. Затем погружают соломинку в мыльный раствор так, чтобы только кончик ее, который будет взят в рот, остался сухим, вынимают ее из раствора и просовывают осторожно через стенку первого пузыря до центра. Затем медленно вытягивая соломинку обратно, выдувают второй пузырь внутри первого. Действуя таким образом, можно выдуть несколько пузырей друг в друге.
Пленка мыльного пузыря все время натянута и давит на заключенный в ней воздух. Направив воронку с пузырем к пламени свечи, вы можете убедиться, что давление воздуха внутри пузыря не так уж мало – пламя заметно уклонится в сторону (рис. 173).
Рис. 173. Опыт, подтверждающий давление внутри мыльного пузыря
Следует отметить, что обычные представления о недолговечности мыльных пузырей не вполне обоснованы – при надлежащем обращении удается сохранить мыльный пузырь в продолжение недель. Английский физик Дьюар (создавший термос – сосуд Дьюара) хранил мыльные пузыри в бутылках, хорошо защищающих от пыли. В таких условиях ему удалось сохранять некоторые пузыри месяц и более. Известны случаи, когда мыльные пузыри годами сохранялись под стеклянным колпаком.
Такая прочность и сила натяжения пузырей вызвана тем, что поверхностный разреженный слой там находится и сверху, и снизу, то есть поверхностное натяжение как бы удвоенное.
И еще о мыльной пленке. Это одна из самых тонких вещей, доступных человеческому глазу. Она в 5 000 раз тоньше волоса или папиросной бумаги. При увеличении в 200 раз человеческий волос кажется толщиной с палец, но при таком же увеличении толщина мыльной пленки еще не доступна зрению. Увеличиваем еще в 200 раз – и стенка мыльного пузыря предстает в виде тонкой линии. Волос же при таком увеличении (в 40 000 раз) имел бы толщину свыше 2 м!
И эта тончайшая пленочка выдерживает давление, способное отклонить пламя свечи. Даже если это давление составляет одну тысячную атмосферы, или 100 Па при толщине пленки в 10-5 мм, это равносильно, если пузырь толщиной в 1 мм выдерживал бы 100 атмосфер или 10 МПа! Это обеспечит только прочнейшая сталь, значит, мыльная пленка прочнее стали!
Мочить или не мочить?
Вот в чем вопрос! Смотря чего мы хотим добиться. Могут ли стальная игла, лезвие бритвы и даже мелкая монета плавать в воде? Можно ли утопить в бокале, наполненном до краев водой, несколько сотен булавок? Можно ли носить воду в решете или плавать в нем? Нет, нет и нет – гласит народная мудрость и подсказывает простой опыт жизни. Да, говорит физика, надо только иметь несмачиваемые поверхности.