Литмир - Электронная Библиотека
Содержание  
A
A

Наряду с дальностью росли грузоподъемность, высотность и скорость самолетов. Первый сверхтяжелый самолет «Илья Муромец» был построен в России. Этот четырехмоторный гигант настолько превосходил все тогдашние машины, что за рубежом долго не могли поверить в существование такого самолета. В 1913 г. «Илья Муромец» побил мировые рекорды дальности, высотности и грузоподъемности.

Если скорость самолета братьев Райт была около 50 км/ч, то современные самолеты летают в несколько раз быстрее звука. А еще быстрее летают ракеты. Например, ракета-носитель, которая вывела на орбиту первый искусственный спутник Земли, имела М ≈ 28.

Как же летает ракета? Схематически очень просто: газы, полученные тем или иным образом в ракете, вырываются из ее сопла, благодаря чему корпус ракеты движется в другую сторону (рис. 223). В настоящее время ракеты работают преимущественно на жидких топливах – керосине, гидразине, жидком водороде и др., а в качестве окислителя (воздуха-то в космическом пространстве нет, а топливу нужен кислород для горения!) – жидкий кислород, перекись водорода и ряд других веществ. От сгорания топлива в окислителе образуются газы, которые, вырываясь из камеры сгорания через сопло, движут ракету. Хотя мы и говорим «движут ракету», словам этим верить трудно. Как это можно внутренними силами двигаться? Да это противоречит всем сразу законам механики! Поэтому рассмотрим эту задачу корректнее.

Удивительная физика - pic_257.png
Рис. 223. Ракета с жидким топливом и окислителем: 1 – сопло; 2 – камера сгорания; 3 – аппаратура

Если самолет движется, опираясь на внешнюю среду – воздух, отталкиваясь от него, то ракета может лететь и в космическом пространстве, где и среды-то нет. Так летит ли она вообще?

Если честно – то нет. Никуда она не летит, центр ее массы где был до начала горения топлива, там и остался, и останется навечно, если даже люди в этой ракете улетят за пределы Солнечной системы. (Все это верно в том случае, если старт ракеты происходит уже в безвоздушном пространстве.)

Дело здесь в том, что одна часть ракеты – головная с грузом, людьми, приборами и т. д., летит в одну сторону, а другая часть – окисленное, или сгоревшее, топливо – в другую. Ведь никто же не будет отрицать, что топливо и особенно окислитель, составляющие большую часть массы, – такая же неотъемлемая часть ракеты, как грузы, приборы и люди. Все они образуют одно тело – ракету. Другое дело, что в полете эта ракета разделяется на корпус или головную часть его, которая летит вперед, и газы, которые летят назад. При этом центр массы всей ракеты совершенно неподвижен.

Так-то с полетами ракет! Не ракет, выходит, а их частей, головных преимущественно, составляющих очень незначительную массу всего устройства, А подавляющая часть массы ракеты тоже летит, но в противоположную сторону. Вот после этого и решайте – вперед полетит ракета или назад? Или останется на месте?

Махать или крутить?

Когда говорят о полетах человека, начинают обычно вспоминать Икара и его отца Дедала, летавших с помощью крыльев, как птицы.

Дело было так. Легендарный строитель, художник и вообще талантливый универсал Дедал вместе со своим сыном Икаром были заточены в знаменитый критский лабиринт царем Миносом. Тем самым Миносом, для которого Дедал построил на свою беду этот лабиринт для помещения туда чудовища – Минотавра, каким-то невероятным образом приходившимся сыном самому Миносу. Короче говоря, Дедал провинился перед Миносом в результате чего и оказался в лабиринте вместе с сыном Икаром.

А так как Дедал был на все руки мастер, то он изготовил из птичьих перьев и воска крылья себе и Икару. Надели они эти крылья и полетели прочь с острова Крит через море. Дедал был уравновешенным человеком и благополучно прилетел куда надо. А Икар, романтическая натура, поднялся, видите ли, слишком высоко. Там, как мы знаем, должен был быть горный холод, но оказалась жара (по легенде – от близости к Солнцу, что, конечно же, невероятно), воск растопился, крылья рассыпались, и Икар, упав в море, погиб.

Не говоря уже о слишком большой технической натянутости легенды (крылья из перьев и воска, полет собственными силами и т. д.), обидно, что все вспоминают недисциплинированного и неудачливого Икара и забывают про технически грамотного и уравновешенного Дедала.

Удивительная физика - pic_258.png
Рис. 224. Икар XVIII в. на мускулолете Ле Беньера

Но мог ли человек вообще силой своих мышц в машущем полете подняться в воздух? На рис. 224 изображен Икар (или Дедал?) XVIII в., летящий на мускулолете конструкции француза Ле Беньера. Разумеется, конструкция не выдерживает никакой критики, как и изображенная на рис. 225.

Удивительная физика - pic_259.png
Рис. 225. Птицевидный планер из проектов прошлых веков

Чтобы успешно махать крыльями и лететь, птицы имеют, как об этом было сказано, в 72 раза более сильные мышцы, чем у человека (по отношению к массе птицы и человека). Грудные мышцы голубя составляют до 40 % массы всей птицы, а у человека – 1 %. Бесполезная затея – летать человеку на крыльях.

Хотя на педальных велосамолетах, изготовленных из

легчайших и сверхпрочных материалов, спортсмены научились летать. В частности, грек К. Канеллопулос повторил полет Дедала протяженностью в 119 км – от Крита до острова Санторин. Размах крыльев велосамолета был 34 м, а масса всего 32 кг.

Как мы видим, человеку своими силами крыльями так и не замахать, а может ли это делать машина? Принципиально ничего не мешает существовать летательной машине с машущими крыльями. Даже зонтик, если его достаточно быстро каким-нибудь легким приводом двигать вверх-вниз, поднимется в воздух из-за разности аэродинамических сопротивлений.

Автору довелось увидеть совершенную модель летательной машины машущего полета. Тяга, которую она развивала вверх, была относительно даже выше, чем у вертолета. Это обеспечивалось достаточно сложной кинематикой движения крыльев – их было аж восемь. А простейшие модели махолетов в виде птиц продаются в магазинах. Одну из них с резиномотором вы видите на рис. 226.

Удивительная физика - pic_260.png
Рис. 226. Модель машины с машущим полетом в виде птицы с резиномотором

Однако все-таки машущий полет связан со сложнейшей нервной деятельностью летящего существа. Обтекаемость крыльев, их углы атаки, силу взмаха и многое другое, необходимое для полета, птица изменяет, «не задумываясь», рефлекторно. Машина должна обладать гигантским электронным мозгом и сложнейшей сервосистемой, чтобы успешно маневрировать в машущем полете. И еще одно: фюзеляж такой машины будет постоянно колебаться – вверх-вниз, вверх-вниз, и пассажиры заболеют морской болезнью.

Перейдем к вертолетам, или к подъему в воздух с помощью воздушного винта. Когда же его изобрели и кто был тот вертолетный Дедал?

Удивительная физика - pic_261.png
Рис. 227. В руках у ребенка модель вертолета выпуска 1320 г.

Писатель С. П. Бойко [3] приводит картину (рис. 227), где ребенок изображен с игрушкой в руках. Игрушка поразительно напоминает винт вертолета, такими летающими вертушками играют дети и сейчас. Установлено, что эта летающая игрушка известна с 1320 г., а сама картина написана в 1460 г.

Первым делает эскиз большого вертолета знаменитый Леонардо да Винчи (рис. 228, а). Он пишет об этой конструкции: «Остов винта должно сделать из железной проволоки, толщиной в веревку; расстояние же от окружности до центра – 25 локтей (около 12 м). Если все будет сделано как следует, то есть из прочной парусины, поры в которой тщательно замазаны крахмалом, то я думаю, что при вращении с известной скоростью такой винт как бы опишет в воздухе спираль и поднимется вверх».

57
{"b":"88272","o":1}