Литмир - Электронная Библиотека
Содержание  
A
A

Металл, как бы мы его чисто ни обработали, имеет неровности, выглядящие под микроскопом как горные хребты. И вот эти хребты одной поверхности скользят по хребтам другой (вала по втулке, одного зуба по другому и т. д.), ломая и круша вершины (рис. 248). Так бывает, если трение сухое, без масла, или даже со смазкой, но не загнанной в клин. Налили, допустим, масла на лист железа и тащим по нему другой лист. Крушение микроскопических гор и хребтов – это интенсивный износ материала, служить он будет недолго. Но если между поверхностями создается клин масла, то микронеровности не касаются друг друга своими вершинами, и скольжение идет без их разрушения, без износа (рис. 249). Вот пока и все о чуде гидродинамической смазки.

Удивительная физика - pic_284.png
Рис. 248. Износ поверхностей при «сухом» трении
Удивительная физика - pic_285.png
Рис. 249. Слой масла разделяет микронеровности поверхностей (износа нет)

Чудо второе – «остекленение» масла при больших давлениях. Запертое в ловушку, зажатое между двумя вращающимися и прижатыми друг к другу силами F катками, масло как бы густеет, «стекленеет», начинает передавать нагрузку сдвига. Вообще жидкости не могут работать на сдвиг – тогда они бы не принимали форму того сосуда, куда их наливают. Но тонкие пленки масла при быстро возникающих и прекращающихся давлениях порядка 1 ГПа (1 000 МПа) начинают вести себя как желе, студень или даже стекло – передавать нагрузку сдвига. Таким образом, каток 1 на рис. 250 начинает везти, вращать каток 2 через слой, а вернее, пленку сдавленного масла толщиной около одного микрометра. Впечатление такое, что один каток ведет другой обычным трением, но это не так: между катками слой масла, катки друг друга не касаются. Электрический ток, например, не передается от одного катка к другому при их вращении из-за образования между ними этой пленки масла. Между неподвижными катками, разумеется, есть контакт, и ток проходит от одного к другому.

Удивительная физика - pic_286.png
Рис. 250. «Остекленевшее» масло между вращающимися прижатыми друг к другу катками:

1 – ведущий каток; 2 – ведомый каток масла.

Сила, передаваемая «остекленевшим» маслом, невелика, она в несколько раз меньше силы обычного трения при тех же нагрузках, но ведь нет интенсивного износа, столь характерного для сухого трения. Поэтому такое «остекленевшее» масло используют в бесступенчатых передачах – вариаторах, которые приходят на смену сегодняшним ступенчатым передачам. Коробки передач автомобилей, тракторов, других транспортных машин, коробки скоростей станков – все они пока в основном ступенчатые. До двадцати передач надо иногда переключать в автомобилях, тракторах и станках. А бесступенчатая передача меняет скорость плавно, и в этом ее огромное преимущество. Скоро ступенчатых передач вообще не будет (на автомобилях, тракторах и станках, по крайней мере).

Удивительная физика - pic_287.png
Рис. 251. Лобовой вариатор от первых легковых автомобилей

Как же устроены бесступенчатые передачи? Они в действительности очень хитры и труднодоступны. Поясним их принцип на примере самой простой (но не самой лучшей!) из них (рис. 251). Называется она лобовой, потому что два катка – диска – здесь прижаты друг к другу как бы лбами. Если большой диск (слева) вращается от мотора с постоянной скоростью, то скорость маленького зависит от его положения на оси. В нижнем крайнем положении эта скорость максимальна; с приближением к центру она падает, в самом центре большого малый диск вообще остановится, а на верхней стороне большого малый диск начинает вращаться уже в другую сторону. Казалось бы, идеальная коробка передач, да она и применялась на ранних легковых автомобилях. По крайней мере, приведенная на рис. 251 передача – именно автомобильная. Большой диск связан с двигателем, а малый – с колесами, через понижающую передачу, разумеется.

Первые вариаторы работали всухую, и срок службы их был очень невелик. Потом стали применять вариаторы со смазкой, вернее, с масляной пленкой между дисками. Современные вариаторы мало похожи на первые, они намного сложнее и хитрее. На рис. 252, например, представлен перспективный вариатор для коробок передач автомобилей, разработанный автором в содружестве с автозаводом АМО ЗИЛ и рядом зарубежных фирм (патенты России № 2138710 и 2140028). Видно, что дисков в нем уже не два, а много, к ним постоянно подается масло; диски автоматически сжаты между собой с переменной силой, соответствующей нагрузке, передаваемой приводом, и коэффициенту трения между дисками.

Удивительная физика - pic_288.png
Рис. 252. Перспективный вариатор для бесступенчатых передач мощных автомобилей

И еще очень важная особенность нового вариатора – он самостоятельно, автоматически меняет свое передаточное отношение от нагрузки. Это свойство называется адаптивностью, приспособляемостью. Допустим, пошел автомобиль с таким вариатором в гору, нагрузки увеличились, и скорость движения его падает. Но падает не из-за двигателя – он продолжает вращаться с той же скоростью, а из-за вариатора, автоматически приспособившегося к новым нагрузкам. Эта адаптивность может еще и меняться по желанию водителя. Вариаторов с такими свойствами раньше просто не существовало.

Для вариаторов разработано особое, высокотяговое масло – трактант, стекленеющее сильнее других. Это масло выпускается в основном в США, но опытными партиями – в Германии и России.

Вот как ведет себя жидкость, в данном случае масло, попавшее в ловушку: оно и снижает трение в подшипниках, и повышает его в вариаторах, помогая передавать вращение без ступеней, повышая срок службы машин, механизмов.

Как-то на одном из американских автозаводов решили проверить, сколько сможет проехать автомобиль без капли масла. Машина со страшным скрипом проехала несколько десятков метров и остановилась. Ремонту она больше не подлежала.

ТЕПЛО И СИЛА

Что вы знаете о теплоте?

«Тепло и сила» – так назывались двигатели, выпускаемые в России в начале прошлого века. Чудо, а не двигатели. Их можно было топить дровами, соломой, углем, торфом – чем угодно. При этом они не были паровыми и были гораздо экономичнее. Ими можно было приводить в движение любую сельхозтехнику (веялки, мельницы, насосы) и даже обогревать помещение. Сейчас таких, к сожалению, не выпускают. Но осталось название, которое как нельзя более подходит к нашей новой главе, в которой речь пойдет о теплоте и ее использовании, в частности, для выработки энергии.

Но прежде всего хотелось задать вам, дорогие читатели, несколько вопросов, чтобы определить, что вам известно о теплоте. По крайней мере, вы сами узнаете, сколько парадоксов таит в себе это понятие. Конечно же, на каждый вопрос будет тут же дан ответ, но вы не спешите в него заглядывать, а сначала попытайтесь ответить сами.

Вопрос первый (из трех составляющих). Говорят, что межпланетная среда, в которой находится наша Земля, имеет температуру около 1 500 000 °С. Может ли такое быть – ведь именно в этой среде летают космические корабли, выходят «погулять» космонавты и, как известно, не сгорают? Как с этим согласуется утверждение о космическом холоде, о том, что в тени там царят стоградусные морозы? И еще: если в межпланетном пространстве действительно такая высокая температура, то как ее измерить? Ведь от 1 000 000 °С не то что расплавится, а мгновенно испарится любой термометр.

Ответ. Действительно, температура солнечной короны, которая простирается на расстояние в несколько десятков радиусов Солнца и в которую попадает наша Земля, 1 000 000 – 2 000 000 °С (тут уж безразлично, по какой шкале – Цельсия или Кельвина, разница в 273 °С здесь несущественна, хотя правильнее измерять термодинамическую температуру в кельвинах). Эта корона состоит из высокоионизированной плазмы – «солнечного ветра», частиц, несущихся (на уровне орбиты Земли) со скоростью 400 км/с – в сотни раз быстрее, чем у молекул при комнатной температуре. При этом число этих частиц всего несколько десятков в 1 см3. Исходя из этих данных легко узнать температуру, которая определяется из молекулярно-кинетической теории, изложенной, например, в учебнике физики для 10 класса. Согласно этой теории температура прямо пропорциональна средней кинетической энергии частиц. При скоростях в сотни км/с температура достигает миллионов градусов; с учетом множества факторов эта температура и составляет 1 000 000 – 2 000 000 К.

62
{"b":"88272","o":1}