Литмир - Электронная Библиотека
Содержание  
A
A

В последнее время ученые думают над тем, как воспользоваться существующими в природе способами преобразования солнечной энергии. Один из них биологический, базирующийся на фотосинтезе растений, вот уже миллионы лет превращающих световую энергию в химическую. Но в среднем по земному шару коэффициент полезного действия такого преобразования составляет лишь доли процента. В то же время микроскопические водоросли, такие, как хлорелла, имеют коэффициент полезного действия до шести процентов. Возникает вопрос: как еще увеличить его? Ответить на этот вопрос можно, только зная в деталях механизм фотосинтеза. Исследования в этом направлении ведутся в институтах фотосинтеза, биохимии, физиологии растений АН СССР и за рубежом.

Наряду с этим намечаются пути практического использования уже имеющихся биологических преобразователей. По мнению академика Н. Н. Семенова, заманчивым, с точки зрения возможности относительно быстрой реализации, представляется следующий двухступенчатый метод: на первом этапе под действием солнечного света на культуру быстрорастущих микроводорослей или других растений накапливать органическую биомассу, а затем с помощью специальных бактерий перерабатывать ее в высококалорийное топливо, например в метан. Лабораторные установки такого типа уже создаются в нашей стране. В Канаде, в лаборатории Торонтского университета, таким методом предложено получать нефть. На первом этапе специальные бактерии под действием солнечных лучей "извлекают" углекислый газ из атмосферы, превращая его в сахар, который затем другие виды микроорганизмов "перегоняют" в топливо. Как полагают канадские исследователи, получение горючего этим методом на промышленной основе можно наладить в течение пяти лет. Одна квадратная миля, засеянная такими бактериями, может дать такое количество топлива, которое эквивалентно примерно двум миллиардам литров нефти.

Другой природный запас энергии Солнца на Земле скрывается в океане. Он проявляется в разнице температур поверхностного и глубинного слоев воды. Градиент температуры может привести в движение тепловые машины с электрогенераторами. Существуют инженерные проекты таких систем. Но не исключено, что их придется переделывать. Виновник тому — чудесный и, как недавно выяснили, многообещающий никелево-титановый сплав — нитинол. Его замечательное свойство заключается в способности быстро изменять свою форму при различных температурных воздействиях. При комнатной температуре кусочек нитиноловой проволоки прочен как сталь. Но при погружении в холодную воду проволока вдруг становится мягкой и податливой. Если се изогнуть, то она останется изогнутой. В горячей же воде она распрямляется с огромной силой и принимает свою первоначальную форму. Таким образом, перед нами преобразователь энергии, который требует лишь изменения температуры для высвобождения сил, достигающих около 9 тонн на каждый квадратный сантиметр.

Созданы и первые нитиноловые двигатели. Причем для их работы нс нужна нефть, газ или электроэнергия, а достаточно теплой воды. Специфические превращения, обусловленные способностью сплава восстанавливать свою форму (кстати, их механизм до сих пор полностью не ясен), вызываются температурным перепадом, составляющим всего 9 °C. Некоторые исследователи утверждают, что при меньших примесях сплав сможет реагировать на разницу температур всего в 3–4 °C. Успехи современной металлургии делают получение чистого нитинола вполне возможным.

Нитиноловые двигатели, рассчитанные на работу при постепенно понижающихся температурах, можно установить вдоль потока горячей воды, сбрасываемой промышленным предприятием. Извлекая энергию из сбрасываемой воды, нитиноловые двигатели тем самым поглощают отработанное тепло и потому препятствуют тепловому загрязнению рек и разного рода водоемов. Учитывая, что в индустриально развитых странах отработанное тепло составляет около двух третей всей потребляемой энергии, то повода для беспокойства, что нитиноловые двигатели останутся без топлива, вряд ли возникнут. Ученые подсчитали, что нитиноловые двигатели, работающие с КПД, равным всего 3 процентам, могут извлечь из Гольфстрима достаточно энергии для удовлетворения потребностей всего Восточного побережья США.

И как материал нитинол хорош: легок, обладает коррозионной стойкостью, немагнитен, необычно инертен даже после длительного контакта с живой тканью. Последнее особенно привлекает медиков. Сплав уже нашел применение в хирургии. Пожалуй, наиболее дерзким замыслом является проект насоса для сердца с использованием нитиноловой проволочки, которая будет расширяться и сжиматься, подобно сердечной мышце.

Нитиноловая технология еще находится в первоначальной стадии развития, но, по мнению создателей нитинолового двигателя, специалистов калифорнийской компании "Макдоннел-Дуглас", этот сплав может изменить направление поисков новых источников энергии. Не исключено, что со временем нитиноловые электростанции могут оказаться экономически куда более выгодными, чем тепловые и атомные электростанции.

Нью-йоркский журнал "Сайенс Дайджест" опубликовал следующий прогноз по поводу нитинола: "…Существует возможность, что еще до конца нынешнего века появится нитиноловая технология, нитиноловая промышленность, а кое-где, возможно, и нитиноловая экономика.

Грохот и рев века ископаемых топлив может смениться тихими всплесками, создаваемыми бесчисленными проволочками, рычагами, петлями, роликами, пружинами, лопастями, ребрами, ремнями и колесами, совершающими в миллионах двигателей непрерывное циклическое движение между теплой и холодной водой и извлекающими поток "чистой", безопасной и бесконечно восполняемой энергии благодаря силе, пульсирующей в кристаллической решетке удивительного сплава".

Не исключено, что нитиноловая электростанция будет и на космических кораблях. Почему бы не использовать на пользу перепад температур освещенного и теневого бортов космического аппарата, который составляет более ста градусов?

Есть еще один способ получения энергии с помощью Солнца, который, как считают ученые, в будущем очень перспективен. Это разложение воды на водород и кислород под действием солнечного света и соответствующих катализаторов. Водород хорошее топливо, причем топливо экологически чистое, не дающее вредных отходов. Можно извлечь водород из воды электролитически, то есть разлагая воду с помощью электрического тока, но это довольно дорого. Вся проблема получения водорода из воды с помощью солнечного света сводится к нахождению катализаторов. Работы в этом направлении начаты лишь в последние годы, но уже первые результаты выглядят довольно обнадеживающе. Ряд катализаторов для основных стадий разложения воды был недавно разработан в нашей стране в Институте химической физики АН СССР и Институте катализа Сибирского отделения АН СССР. Для этих же целей советскими учеными были предложены активные в фотосинтезе вещества, выделяемые из растений и бактерий.

Помимо экологической чистоты, другими важными достоинствами водородной энергетики являются, можно сказать, безграничные запасы воды — сырья для получения водорода — и удобство его транспортировки по трубопроводу (ученые считают, что затраты на транспортировку водорода на большие расстояния будут почти такими же, как и на передачу электрической энергии). С приходом водородной энергетики мы получим и экологически чистый автомобиль. Кстати, в разных городах нашей страны прошли успешные испытании обычные серийные автомобили, которые вместо бензина использовали водород. Ученые предполагают, что со временем водородная энергетика станет экономически выгодной для широкого применения.

Электростанции на орбите

Базируясь только на Земле, солнечной энергетике не выбиться в лидеры. Мешает атмосферный зонтик над нашей планетой и суточные вариации солнечного потока. Кроме того, у наземной крупномасштабной гелиоэнергетики есть еще один недостаток, о котором мы уже упоминали и с которым в будущем придется считаться. Из-за малой плотности энергии солнечного потока под концентраторы или фотоэлементы придется отчуждать большие площади. Например, по расчетам ученых, для выработки всей потребляемой сегодня в нашей стране электроэнергии с помощью серийных промышленных полупроводниковых преобразователей с коэффициентом полезного действия, равным 10 процентам, понадобилось бы занять под солнечные электростанции около 10 тысяч квадратных километров в среднеазиатских районах. Но нужно учесть, что наземная солнечная энергетика не всепогодна, а потому надо будет иметь солнечные электростанции-дублеры, разнесенные друг относительно друга на значительные расстояния. Кроме того, потребности в энергетике непрерывно растут, и, следовательно, придется увеличивать площадь отчужденных земель и именно в южных районах, которые имеют большие перспективы в области сельскохозяйственного производства. Спрос же на сельскохозяйственную продукцию лавинно нарастает. Так, статистики утверждают, что до начала нового тысячелетия, то есть за двадцать неполных лет, для обеспечения продовольственной стабильности в мире должно быть произведено продовольствия столько же, сколько его было произведено за всю предыдущую историю развития сельского хозяйства на планете.

51
{"b":"833691","o":1}