Литмир - Электронная Библиотека
Содержание  
A
A

Со времени запуска третьего советского спутника и американского "Авангарда-1", на которых были впервые установлены солнечные батареи, они по-прежнему остаются основным источником электропитания космических аппаратов. Кремниевая солнечная батарея на "Спутнике-3" проработала два года, снабжая электроэнергией передатчик "Маяк", пока сам спутник не сгорел в более плотных слоях атмосферы.

Не без основания солнечные фотоэлектрические станции считаются весьма перспективным направлением: в них отсутствуют движущиеся части, они имеют неограниченный срок службы, требуют минимального обслуживания (или вообще не требуют такого). В отличие от электрогенераторов других типов они могут применяться в широких пределах мощности — от одного ватта и менее до нескольких миллионов киловатт.

С выходом на космические орбиты расширилось и наземное использование солнечных батарей. Это еще один пример практической отдачи тех усилий, которые были вложены в освоение космоса.

Пока еще стоимость солнечных элементов достаточно высока, но в ряде случаев их применение уже сейчас является экономически выгодным. Автоматические морские и речные бакены, сигнальные огни на буях, в маяках, на морских нефтяных вышках, автоматические метеостанции и другие удаленные труднодоступные приборы, источники электроэнергии для небольших южных селений, экспедиций, чабанов, слуховые аппараты, вмонтированные в оправу очков… Вот далеко не полный перечень устройств, использующих солнечные батареи. В США строится даже промышленное предприятие, где вся необходимая электроэнергия — для освещения, отопления и даже для технологических нужд — будет производиться солнечными элементами. Они расположатся на южном скате крыши здания и займут площадь 2400 квадратных метров. В пасмурные дни будет расходоваться энергия, запасенная впрок в мощных аккумуляторных батареях.

Фотоэлементы непрерывно совершенствуются — снижается стоимость их производства, повышается эффективность преобразования солнечной энергии, уменьшается масса.

Наиболее освоены па сегодняшний день кремниевые элементы. Их коэффициент полезного действия составляет около 15 процентов. Но коммерческое производство кремниевых солнечных элементов довольно сложно. Оно включает стадию выращивания кристалла из расплава, где требуется контроль температуры с точностью ±0,1 °C при температуре 1420 °C.

У кремниевых батарей появился серьезный конкурент — элементы на арсениде галлия. В лабораторных условиях их коэффициент полезного действия доведен до 20 процентов, кроме того, они способны выдерживать тысячекратную концентрацию потока солнечных лучей, менее чувствительны к воздействию различных разрушающих факторов космического пространства и в несколько раз тоньше, чем кремниевые батареи.

Замечательная способность арсенида галлия преобразовывать в электричество световой поток высокой плотности послужила основой для создания интересной схемы солнечного источника. Зеркала, которые можно сделать из сравнительно дешевых материалов, позволяют собирать солнечные лучи с необходимых площадей и затем фокусировать на фотопреобразователь из арсенида галлия небольшого размера и соответственно значительно меньшей стоимости по сравнению с солнечной батареей, построенной по традиционной схеме. Это одно из направлений, в котором у советских ученых есть неплохой задел на будущее. Ведутся работы по созданию фотопреобразователей с использованием органических полупроводников.

В последнее время достигнуты большие успехи в разработке солнечных батарей на основе сульфида кадмия. Хотя их коэффициент полезного действия пока ниже кремниевых, однако полагают, что в массовом производстве они будут дешевыми и способными в недалеком будущем конкурировать с привычными нам источниками энергии. По результатам ускоренных ресурсных испытаний ожидается, что срок службы элементов с использованием сульфида кадмия превысит двадцать лет. У сульфида кадмия важное преимущество: солнечная батарея может быть выполнена в виде пленки. Это упрощает монтаж па ферменных конструкциях, которые перспективны как для космоса, так и для Земли.

Но кремний пока не собирается сдавать позиции.

В ряде стран, в том числе и в СССР, разрабатывается новая технология производства кремниевых элементов в виде длинных тонких лент. При этом удается исключить из технологии дорогостоящий процесс нарезки тонких кремниевых пластин из большого монокристалла, автоматизировать и снизить стоимость производства. Но пока выпуск дешевых и эффективных элементов в широких масштабах предвидится не ранее 1985 года. Одна из трудностей получения фотоэлементов, особенно кремниевых, состоит в том, что для их производства требуются большие затраты энергии, но здесь ученые возлагают надежды на само Солнце, а точнее, на уже упоминавшуюся солнечную печь.

Прогресс технологии производства кремниевых элементов наглядно отражается в стоимости одного ватта энергии, получаемой от солнечной батареи. Например, в США в 1974 году стоимость составляла 50–60 долларов за один ватт мощности, снимаемой с солнечной батареи. В 1977 году за счет совершенствования технологии стоимость была снижена до 15 долларов. Предполагается, что в 1986 году она составит около 50 центов за ватт. При такой стоимости кремниевые элементы смогут вырабатывать электроэнергию в земных условиях по ценам, конкурентоспособным с другими автономными источниками энергии.

Большое внимание уделяется повышению коэффициента полезного действия фотоэлементов; Это позволит снизить площадь, отводимую под гелиостанции. На основе известных материалов и принципов вполне реально уже в ближайшее время создать фотоэлементы с коэффициентом полезного действия 35–40 процентов, а теоретически коэффициент полезного действия преобразователей с использованием объемного фотоэффекта в гипотетических пока материалах может превысить и 90 процентов.

Особенностью наземных гелиостанций является то, что источник их энергии — солнечный свет — нестабилен. Интенсивность его даже при идеальных погодных условиях изменяется в течение суток от максимума в полдень практически до нуля ночью. В облачные, пасмурные дни, при пыльных или песчаных бурях солнечный свет может надолго "выключаться" даже днем. Поэтому, чтобы обеспечить бесперебойное снабжение электроэнергией, ее надо запасать впрок, и в довольно больших количествах. Из-за этой особенности солнечные электростанции будут эффективными при пиковых, а не базовых, постоянных, нагрузках.

Крупномасштабное накопление энергии — задача сложная. Строить резервуары-хранилища на большое количество горячей воды и пара — довольно дорого, да и потери при хранении и преобразовании энергии будут немалыми. Заманчиво иметь запас энергии непосредственно в самой удобной форме — электрической. Работы по созданию "складов" электрической энергии ведутся. Например, объединение американских фирм разрабатывает гигантский свинцово-кислотный аккумулятор, который займет площадь 0,2 гектара и будет весить 2250 тонн. Элементы этой аккумуляторной батареи будут автоматически заполняться электролитом. Общий вес ее свинцовых пластин составит 1575 тонн. Ввод "супераккумулятора" намечен на 1984 год. Батарея по проекту должна обеспечить подачу мощности в 45 мегаватт. А вот еще один пример "склада" электричества, основанного на явлении сверхпроводимости. Известно, что электрический ток может сколь угодно долго циркулировать без каких-либо потерь энергии по "кольцевому маршруту" в соленоиде, охлажденном до температуры, близкой к абсолютному нулю (минус 273 градуса Цельсия). При такой температуре электрическое сопротивление проводника становится нулевым. В 1984–1987 годах в США, в университете штата Висконсин, планируется создать экспериментальную установку, способную хранить 100 мегаватт-часов электроэнергии. Гигантская катушка более 100 метров в диаметре будет установлена в специальном тоннеле, пробитом в горах. В нем с помощью установок с жидким гелием будет поддерживаться температура, близкая к абсолютному нулю. По оценкам специалистов Висконсинского университета, коэффициент полезного действия подобных установок будет около 95 процентов.

50
{"b":"833691","o":1}