Литмир - Электронная Библиотека
Содержание  
A
A

Проведенный военными анализ существующих видов РЭА показал, что плотная компоновка радиодеталей внутри блока позволяет получить достаточно большой эффект в уменьшении габаритов аппаратуры. С учетом уплотненного монтажа и заливкой схем связующим веществом, таким как эпоксидная смола или пенополиуретан, плотность монтажа могла быть увеличена до 2–3 деталей на 1 кубический сантиметр по сравнению с плотностью заполнения со стандартными радиодеталями 0,02—0,06 деталей на 1 кубический сантиметр. Если же использовать конструкции модулей специальной формы — микромодули, плотность заполнения могла быть увеличена до 5—15 деталей на 1 кубический сантиметр, а при использовании специальных радиодеталей в микромодульном исполнении плотность монтажа могла быть увеличена еще в 3–7 раз. Цифры оказались весьма убедительными. Такой метод конструирования был очевидным, а пути его реализации достаточно ясными.

Между тем Колосов, перед которым Расплетин поставил задачу создания элементной базы на основе микроэлектроники, очень быстро с этой задачей определился. После активных консультаций и обсуждений с Расплетиным основных положений идеологии создания твердых тел на основе микроэлектроники Колосов в начале 1959 года подготовил для рассмотрения рукопись своей книги «Вопросы молекулярной электроники», изданной отделом научно-технической информации КБ-1в 1960 году. В ней Андрей Александрович блестяще обосновал необходимость и своевременность начала широкомасштабных работ по исследованию проблем, связанных с созданием твердых схем, и изложил новые принципы создания радиоэлектронной аппаратуры. Новое направление в создании радиоэлектронных устройств получило название «Молекулярная электроника». В этой работе А. А. Колосов дал краткое описание физических основ работы устройств молекулярной электроники. Это была первая в мире работа такого рода. В предисловии к изданию А. А. Колосов писал:

Сущность этих новых принципов заключается в отказе от построения систем в виде блоков, состоящих из совокупности большого числа активных и пассивных элементов, и переходе на моноблоки твердого тела, которые за счет создания в этом твердом теле соответствующих областей, слоев и зон с требуемыми свойствами преобразования электрического сигнала смогут выполнять те же функции, что и обычные электронные блоки, состоящие из набора отдельных элементов… создание РЭА на основе устройств молекулярной электроники, на основе использования свойств твердого тела позволит уменьшить объем и соответственно вес РЭА в сотни и тысячи раз, обеспечить широкую автоматизацию процессов производства аппаратуры, значительно снизить ее стоимость.

Указанные направления работ по микроминиатюризации РЭА нашли поддержку председателя НТС ВПК А. Н. Щукина, председателя ГКРЭ В. Д. Калмыкова и заказчика.

В результате вышел приказ ГКРЭ № 401 от 20 августа 1960 года:

В целях широкого развития научно-исследовательских работ по созданию функциональных блоков на основе свойств твердого тела, обеспечивающих сокращение в сотни раз объемов и весов РЭА, существенного повышения ее надежности, появления новой технологии, предусматривающей широкую автоматизацию производств для массового изготовления РЭА, приказываю:

1. Назначить КБ-1 головной организацией по научно-исследовательской работе в области молекулярной электронике (шифр «Блок»), а также по разработке схемных решений и использованию их в радиоэлектронных устройствах.

2. Назначить научным руководителем темы «Блок» доктора технических наук, главного конструктора первой степени Колосова А. А., освободив его от обязанностей начальника и главного конструктора СКБ-41 КБ-1 ГКРЭ.

В соответствии с этим приказом в КБ-1 был создан научный отдел «Прикладной физики» со штатом на 1960 год — 100 человек. Начальником и научным руководителем этого отдела был назначен А. А. Колосов. Кроме этого, КБ-1 было рекомендовано организовать НТС по молекулярной электронике с привлечением ведущих специалистов из других отраслей.

Однако военные посчитали, что в работе «Блок» недостаточно внимания уделено унификации микромодулей. Расплетин согласился с их доводами, и по инициативе военных уже 1 августа 1961 года выходит постановление ЦК КПСС и СМ СССР № 695–292, в котором КБ-1 была поручена новая опытно-конструкторская работа «Разработка комплекта унифицированных микромодулей для конструирования радиоэлектронной аппаратуры (тема «Модуль-1»)» в кооперации с двадцатью НИИ и КБ страны.

В соответствии с этим постановлением по рекомендации А. А. Расплетина приказом по ГКРЭ главным конструктором ОКР был назначен начальник отдела КБ-1 И. А. Барканов.

В результате выполнения НИР «Модуль-1» были разработаны 104 типа микромодулей, позволяющих конструировать на их основе различные радиоэлектронные устройства военного назначения.

Модульное исполнение РЭА в КБ-1 нашло применение только в бортовой аппаратуре, где разработчики КБ-1 были соисполнителями. Что касается разработчиков наземной аппаратуры, то микромодули применения не нашли, так как значительно ограничивали их творческие возможности.

Работы по микромодулям в СССР в 1960-е годы были весьма востребованными. Это был первый этап работ по микроминиатюризации радиоаппаратуры и являлся интересной страницей в развитии технологической базы КБ-1 и микроминиатюризации РЭА в стране. Опыт разработки и применения микромодулей нашел отражение в достаточно большом числе публикаций.

Еще более впечатляющие результаты были получены в области миниатюризации РЭА в КБ-1 на базе гибридных и твердотельных схем. Эти работы находились под пристальным вниманием А. А. Расплетина.

Расплетин освободил Колосова от рутинной работы по НИР «Блок» (по выдаче ТЗ на микромодули), передав эти функции начальнику отдела КБ-1 Н. А. Барканову, рекомендовал все усилия направить на работы по микроэлектронике, дав ему большие полномочия и неограниченные финансовые ресурсы. Поскольку работы по микроэлектронике проводились в инициативном плане, только на кафедрах вузов и университетов страны, Расплетин предложил Колосову установить контакты с вузовскими учеными и заключить с ними финансовые договора. Это был очень важный шаг, позволивший резко продвинуться в решении ряда принципиальных вопросов создания микроэлектронных схем. Наибольший вклад в выполнение этих работ внес Таганрогский радиотехнический институт (ТРТИ), где под руководством профессоров В. Г. Дудко и Л. Н. Колесова были получены обнадеживающие результаты по созданию твердых схем и начата подготовка молодых специалистов по микроэлектронике. Серьезные исследования велись в ГГУ по пассивным тонкопленочным компонентам — резисторам и конденсаторам. В Томском государственном университете (ТГУ) проводились исследования арсенида галлия и возможности создания на его основе полупроводниковых диодов. Интересные работы велись в Бийске группой молодых физиков — выпускников ТГУ (И. Н Важенин, Д. Т. Колесников, В. Ф. Зорин, Г. А. Блинов, П. Е. Кандыба). Эта группа разрабатывала твердые схемы на основе МОП-транзисторов. Усилиями этой группы были заложены основы технологии создания пассивных компонентов гибридных схем. В Новосибирске под руководством профессора Э. Евреинова в Институте математики Сибирского отделения АН СССР велись исследования по пленочной технологии. В КБ-1 на очень хорошем уровне велись работы по разработке толстопленочной технологии создания пассивных компонентов ЕИС (А. К. Катман).

Роль вузов и университетов в начальный период зарождения микроэлектроники в СССР трудно переоценить, так как в них, по существу, готовились инженерные и научные кадры для микроэлектроники — научно-техническая интеллигенция новой отрасли, ее интеллектуальный потенциал.

Особую роль в начальный период зарождения микроэлектроники в СССР имели исследования и разработки, проводимые в Ленинграде под руководством Ф. Е Староса и И. В. Берга в возглавляемом им КБ-2. Оба они — эмигранты из США. История их появления в СССР описана в романе Д. Еранина «Бегство в Россию».

79
{"b":"606914","o":1}