Это революционные повороты. Дж. Дж. Томсон говорил: «Прикладная наука ведет к реформе, чистая наука — к революции». Это относится к изменениям прикладных, практически применимых циклов на основе неизменных научных схем («прикладная наука») и к изменению самих этих схем («чистая наука»). В целом они происходят сейчас практически непрерывно, поскольку после каждого поворота начинается процесс освоения нового принципа, да и сами повороты возникают то в одной, то в другой области. В качестве интегрального эффекта они приводят к непрерывному ускорению роста производительности труда, к реализации формулы Р''> О. Но как определить коэффициент ускорения, как определить нечто неизменное, постоянное, рассудочное в деятельности разума, сводящейся к изменению, к неотождествленности?
Здесь есть нечто сравнительно неизменное: это фундаментальные соотношения теории относительности и квантовой механики; они в своей основе могут претендовать на длительную роль исходных принципов науки и они являются некоторыми целевыми канонами для новых физических схем: ведь и реакторы-размножители, и термоядерные реакции — это этапы приближения к идеальному соотношению Е = mс2. Изменение подобных фундаментальных идеалов привело бы к ненулевой третьей производной от производительности труда по времени к Р''>О. Но формула Е = mс2, как и другие фундаментальные основы современной науки, не определяет темпов увеличения масштабов освобождаемой энергии в ядерных реакциях и других переходов от одной физической схемы к другой.
Здесь еще одна достаточно существенная трудность. При составлении плана ГОЭЛРО пользовались более или менее интуитивными оценками будущего. Этот метод применялся задолго до того, как он получил название «дельфийского». Комиссия ГОЭЛРО обращалась к своим членам и к другим крупным специалистам, которые давали качественные, а иногда и количественные характеристики предстоящего развития транспорта, металлургии, добычи топлива и т. д. Этот метод в середине 20-х годов (помнится, при составлении контрольных цифр на 1925–1926 гг.) был назван «методом экспертных оценок». Он применялся и позже, в частности в начале 30-х годов при составлении генерального плана, причем не только для составления прогнозных вариантов, но и для выбора оптимального варианта, т. е. для самого планирования. Один из характерных для этого времени эпизодов: в 1930 г. И. Г. Александров продиктовал пишущему эти строки титульный список электростанций на 10–15 лет вперед, который в значительной мере совпадает с перечнем наиболее рентабельных станций из числа построенных в 30-е годы. У того же И. Г. Александрова интуитивной или полуинтуитивной была и уже упоминавшаяся уверенность в значительном развитии электроемких производств, позволявшая ему наметить колоссальный комбинат в Запорожье и проектировать Днепрогэс в одноплотинном варианте.
Но сейчас такие интуитивные оценки могут играть менее значительную роль. Изменения физических схем обладают, как это уже говорилось, большей общностью, чем технические новшества, и поэтому большей способностью проникать в другие отрасли, становиться содержанием межотраслевой информации. Интуиция основана главным образом на опыте и знаниях в некоторой определенной отрасли и не охватывает проникающей в эту отрасль информации о новых применимых в ряде отраслей идеальных физических схемах. Если бы реконструкция производства в целом была линейной функцией научно-технических сдвигов, мы могли бы получить общий прогноз, просуммировав отраслевые экспертные оценки. Но реконструкция производства — нелинейная функция; сдвиги в отраслях — это не только технические, но и научно-технические сдвиги, они основаны на применимых в большем числе отраслей новых научных данных; информация об этих данных мигрирует из отрасли в отрасль, происходит взаимодействие научно-технических сдвигов, которое нельзя определить с помощью отраслевой интуиции.
Как же все-таки учесть вмешательство разума в цепи рассудочных экстраполяций, как прогнозировать радикальные сдвиги, вызванные уже не новыми конструкциями, а новыми принципиальными схемами, новыми целевыми канонами технического творчества?
Здесь только один выход. При составлении народнохозяйственных планов мы сопоставляем прогнозы, соответствующие различным начальным условиям, и затем выбираем оптимальный. Но оптимизация не оканчивается выбором оптимального варианта, составлением плана. По-видимому, она должна быть многошаговой и практически непрерывной. В турнирных шахматных партиях, когда партия отложена, секунданты игрока проигрывают варианты дальнейшей игры для каждого возможного ответного хода. В науке человек задает природе вопросы, и она, с большей или меньшей задержкой, отвечает на них. Ответ не всегда можно предвидеть. Может быть, он будет состоять в отрицании смысла заданного вопроса. Но он последует, так же как последует при продолжении шахматной партии ответный ход противника. Нужно только, чтобы уже были готовы прогнозы, предвидения технических, технико-экономических и структурных сдвигов, которые вызовет ответ природы — новая экспериментально осуществленная физическая схема. Эти прогнозы должны раскрыть воздействие новой физической схемы на уровень, скорость возрастания и ускорение возрастания производительности труда. Тогда можно будет быстро определить начальные условия, необходимые для максимальной реализации новой физической схемы для максимального приращения фундаментального индекса Q=/(P, Р', Р'').
Прогноз путей и результатов технического воплощения уже определенной физической схемы совпадает с методом ГОЭЛРО и является сравнительно изученной задачей.
Эконометрия оптимизма
Неклассическая наука продемонстрировала в чрезвычайно отчетливой форме рационалистическую природу познания. Она стала торжеством «внутреннего совершенства», логического анализа, связывающего каждое экспериментальное открытие с максимально общими принципами. Но эти общие принципы представляют собой не только логические конструкции. Они обобщают наблюдения и, что особенно важно, — эксперименты, активную перекомпоновку процессов природы, они обладают «внешним оправданием» и являются общими картинами мироздания, его отображениями. Отображениями не только статического состояния мира, но и его эволюции. Такой рационализм четырехмерен, он включает ретроспекцию и прогноз. Поскольку познание человека связано с его активной, целесообразной деятельностью, прогноз связывается с целями и при достаточной корреляции становится оптимистическим прогнозом.
Рационализм всегда был связан с математикой, а в XVII в. математика оказалась тем направлением рационалистической мысли, которое соединилось с экспериментальным естествознанием и стало классической наукой — этим синтезом рационализма, опирающегося на эксперимент, и эксперимента, раскрывающего ratio мира.
Наука XVII в. уже не ограничивалась чисто логическим противопоставлением различных объектов и событий, как это было, например, в теории движения Аристотеля, где различались только «естественное место» тела, где оно покоится, и его пребывание вне «естественного места», откуда тело стремится удалиться. Теперь движение стало непрерывным процессом, который рассматривается от точки к точке и от мгновения к мгновению. Кеплер писал: «Там, где Аристотель видит между двумя вещами прямую противоположность, лишенную посредствующих звеньев, там я, философски рассматривая геометрию, нахожу противоположность, заполненную промежуточными объектами, так что там, где у Аристотеля один термин: «иное», у нас два термина: «больше» и «меньше»» [107].
Действительно, в противоположность перипатетической науке, наука нового времени пользуется непрерывными в общем случае множествами, где между каждыми двумя объектами находятся промежуточные объекты, и различие между этими двумя объектами выражается прежде всего в расстоянии, если речь идет о пространственных положениях, и в «расстояниях», если речь идет о более сложных множествах.