Литмир - Электронная Библиотека
A
A

Сейчас трудно предвидеть конкретные формы «прицельной» радиационной генетики, «прицельной» радиационной терапии. Нас и интересуют здесь не эти конкретные формы, а принципиальное значение этой тенденции для общего прогноза на 2000 г. Оно состоит в переходе к сознательной перестройке детальной структуры биополимеров. Если квантовая электроника концентрирует неупорядоченное и в этом смысле «энтропийное» множество источников излучения, то квантовая биохимия, применяющая тонкие лучи коротковолновых излучений и тонкие потоки различных по типу и энергии частиц, уменьшает неупорядоченность воздействий на генетические изменения.

Наиболее энтропийной, неупорядоченной, неконтролируемой формой таких изменений являются мутации, вызываемые радиационным фоном. Конец XX в. будет временем уменьшения этой энтропийной формы воздействия на жизнь и возрастания концентрированных форм такого воздействия.

В одной из дальнейших глав мы остановимся на проблеме информации и ее накопления и концепции как стержневой линии прогресса во всех областях. Сейчас, забегая вперед, можно отметить следующее.

Природа пошла довольно далеко в статической упорядоченности наследственности. Генетический код обладает высоким уровнем стабильности. Молекула ДНК располагает значительной «памятью» об эволюции вида и неплохо «знает», какие детали организмов будут повторяться в будущем. Но информация об изменении наследственности невелика. Мутации органических форм не запрограммированы. Эволюция органической жизни упорядочена только статистически: из большого, статистически репрезентативного множества случайных мутаций отбираются и воспроизводятся изменения, которые увеличивают вероятность выживания организмов. В некоторой мере это объясняется неупорядоченностью, случайностью, «энтропийностью» воздействий, в частности радиационных воздействий, на живое вещество и генетические коды организмов. Фундаментальная задача нашего столетия — передать следующему веку значительный запас информации о динамике генетической информации. Задача эта в известной мере решается упорядочением, концентрацией радиации, уменьшением ее энтропии (за счет ее роста в окружающей среде), т. е. квантовой электроникой, и аналогичными ей методами. Подчеркнем только, что теоретической основой и более детального изучения биополимеров, и дальнейшего прогресса электроники служит квантовая физика.

Из всего сказанного о воздействии квантовой электроники на молекулярную биологию и о неклассическом характере процессов изменения наследственного кода вытекает следующее.

Ноозоны существуют не только в ряде дискретных частей материи и не только в спектре излучений. Они существуют и в органической жизни. Классическая наука знала о переходах от физических и химических закономерностей к собственно биологическим закономерностям онтогенеза, и здесь, в этой точке перехода, она создавала начальные физико-химические условия для онтогенеза — ноозоны онтогенеза, условия орошения и удобрения, которые вместе с выбором климатических условий для различных культур определяли вероятность определенной онтогенетической эволюции. Классическая наука знала и о начальных условиях филогенеза, а практика комбинировала условия отбора таким образом, чтобы возникали новые, заранее представленные в виде цели селекции видовые особенности. Современная молекулярная биология делает ноозоной переход от физических воздействий на молекулу к структуре молекулы, содержащей генетический код, изменение этого кода.

Но возможность управления изменениями кода вытекает из неклассической природы воздействий и неклассической природы молекулы живого вещества.

Существует еще одна связь между квантовой физикой и биологией. Ее нельзя представить в виде серии экспериментальных приемов и физических схем, переходящих из физики в биологию. Речь идет о повышении интеллектуального потенциала науки в целом, в частности биологии, в результате вызванного квантовой механикой резкого расширения того, что можно было бы назвать ассоциативными валентностями научного мышления. Когда ученый ищет модель, раскрывающую природу некоторого процесса, у него возникает то или иное число ассоциаций. Он может скомпоновать имеющиеся в его распоряжении понятия и факты в соответствии с каждой из этих ассоциаций. Когда Карно думал о границах усовершенствования паровых машин и о переходе теплорода от топки к конденсатору, естественной матрицей для термодинамической схемы была механическая модель жидкости, переливающейся из сосуда с более высоким уровнем жидкости в сосуд с менее высоким уровнем. Когда Фарадей создавал свою концепцию поля, силовые линии ассоциировались с упругими трубками. Ученый выбирает из меньшего или большего числа возможные ассоциации. Число этих ассоциаций во много раз возрастает при появлении новых концепций, которые означают не только «продвижение разума вперед», но и его «углубление в самого себя».

Сейчас мы остановимся на обратной связи между физикой и биологией.

Когда мы говорим об итогах той революции в представлениях о жизни, которой ознаменовалась середина столетия, на первый план выступает воздействие на биологию экспериментальных средств физики и химии, классических и квантовых физико-химических понятий и общего подъема интеллектуального уровня, вызванного теоретической физикой. Но когда мы говорим о перспективах, происходит некоторый сдвиг акцента. По-видимому, в десятилетия, оставшиеся до конца века, значительно вырастет обратное воздействие биологии на физику, химию и связанную с физикой и химией экспериментальную и производственную технику.

Это воздействие возможно на молекулярном и на надмолекулярном уровнях. На молекулярном уровне, вероятно, будет происходить совершенствование синтетических полимеров, причем «целевой схемой» окажутся биополимеры, т. е. макромолекулы живого вещества. Последние обладают рядом преимуществ, например не достигнутой в химии однородностью состава. Биополимеры состоят из молекул, совпадающих по составу и строению. В синтетических полимерах — синтетических каучуках, пластмассах, волокнах — встречаются цепи с различными длинами, с различным расположением радикалов и атомов. Можно предположить, что синтетические материалы в ближайшие десятилетия расширят область своего применения за счет приближения на молекулярном уровне к материалам органического происхождения. Вместе с тем молекулярная биология позволит расширить число синтетически получаемых материалов с заранее заданными свойствами и самый спектр этих свойств.

Не исключено, что на надмолекулярном уровне обратное воздействие биологии на физику приведет к возможности имитировать в силовом аппарате производства двигательные реакции живого вещества.

Чисто механическая или электромагнитная схема не может приблизиться ни по коэффициенту полезного действия, ни по дифференцированности движений к мышце с ее механохимическими функциями.

Дж. Томсон сравнивал руку обезьяны, срывающей с дерева апельсины, с машиной, которая выполнила бы ту же функцию с помощью электроники. Электронная машина, вероятно, с трудом помещалась бы на грузовике и потребляла бы много энергии. Обезьяна весит 20 кг и потребляет 500 г орехов в день[63]. Но это рука обезьяны. А рука человека? Рука, которая «достигла той высокой степени совершенства, на которой она смогла, как бы силой волшебства, вызвать к жизни картины Рафаэля, статуи Торвальдсена, музыку Паганини»?[64]

Быть может, движения мышц, уступающие движениям механизма по точности повторений, но превосходящие их при выполнении дифференцированных распоряжений мозга, станут образцами для производственной и экспериментальной техники. Быть может также, устройства, имитирующие мышцу по функциям, будут имитировать ее и на молекулярном уровне, состоять из синтетических макромолекул и действовать с помощью механохимических процессов. Но все же наиболее вероятная по направлению реконструкция силового аппарата обойдется, по крайней мере в ближайшие десятилетия, без синтетических полимеров, имитирующих механохимические функции мышц, и функции рабочих мышц будут выполнять системы, состоящие из кристаллических решеток.

вернуться

63

См.: Дж. Томсон. Предвидимое будущее, стр. 138.

вернуться

64

К. Маркс и Ф. Энгельс. Соч., изд. 2, т. 20. М., 1961, стр. 488.

39
{"b":"583270","o":1}