Это и придает современной науке ее специфический прогнозный стиль. Раньше характеристика перелома в науке укладывалась в предложение типа «мы теперь уже знаем…» И теперь сохранилась эта составляющая характеристики, но акцент передвинулся на предложение типа «мы теперь видим, что нам еще предстоит узнать». Этот перенос акцента характерен и для биологии, причем под прогнозной рубрикой «что нам предстоит узнать» стоит самый общий и кардинальный вопрос «что такое жизнь?» Он складывается из тысяч конкретных вопросов о структуре и поведении различных организмов, тканей, клеток и молекул, но все они явным образом связаны с кардинальной проблемой сущности жизни. С ней связаны и прикладные вопросы. Продолжением и конкретизацией формулы «что нам предстоит узнать?» служат вопросы: «Как уничтожить рак?», «Как существенно, на десятилетия, продлить среднюю продолжительность жизни людей?», «Как управлять наследственностью?».
Чтобы подойти к этим проблемам (можно также сказать «к этим прогнозам»), следует, как и в предыдущих главах разъяснить некоторые специальные понятия. Но без деталей и самым кратким и беглым образом. Эта книга не претендует на роль обзора современного состояния физики, химии и биологии; задача ее состоит в том, чтобы попытаться ответить на вопрос: как изменяются фундаментальные представления о природе и что может дать человечеству их изменение? А поскольку этот вопрос интересует всех, попытка должна быть сделана в популярной форме, что опять-таки требует ограничить изложение минимумом специальных понятий и терминов.
Тесная связь специальных теоретических (в том числе математических и физических) конструкций и экспериментальных данных с кардинальным вопросом о сущности жизни сближает биологию с натурфилософской мыслью. Но только по широте поднимаемых вопросов, отнюдь не по характеру исследования. Современная биология связывает частные концепции с общей проблемой и с общими постулатами и таким образом достигает «внутреннего совершенства» своих концепций. Но эти общие постулаты обладают непосредственной или опосредствованной возможностью экспериментальной проверки и критерием «внешнего оправдания». Это относится прежде всего к вопросу: какое звено в иерархии дискретных частей материи обладает специфической способностью воспроизводить живое вещество той же структуры? Таким звеном являются очень большие молекулы, состоящие из многих тысяч атомов. Их называют биополимерами и макромолекулами. По своему составу они являются белками (комбинациями аминокислот) и нуклеиновыми кислотами. Существуют очень серьезные аргументы, чтобы приписать этим большим молекулам функцию самовоспроизведения. Современное учение о наследственности приписывает эту функцию хромосомам — образованиям, находящимся в ядрах клеток. В структуре хромосом содержится «генетический код», т. е. эта структура определяет структуру и судьбу клеток, возникающих из данной, а если данная клетка зародышевая, то ее хромосомы определяют эволюцию организма. Эта эволюция не сводится к росту организма, как это происходит, например, с кристаллами. Из весьма общих соображений о коде, предопределяющем поведение миллиардов клеток, из судеб которых складывается эволюция организма, из соображений о численности элементов структуры, в которой закодированы онтогенез и наследственность, из соображений об устойчивости этой структуры, из некоторых принципов квантовой механики и аналогий с квантовой механикой возникло представление о макромолекуле, в которой группировка атомов и радикалов служит генетическим кодом.
Остановимся на том изложении представлений о макромолекуле как носителе генетического кода, которое было сделано Шредингером в середине 40-х годов[53].
Шредингер сближает молекулу с элементом твердого тела — кристаллом. Молекулы в кристалле и атомы в молекуле связаны силами одной и той же природы. Шредингер подчеркивает квантовый характер этих связей — их нельзя представить, исходя из непрерывности энергии и из непрерывного перехода от одной конфигурации частиц к другой конфигурации, обладающей энергией, сколь угодно отличающейся от первоначальной. Далее Шредингер говорит о построении кристалла из молекул. Молекулярная структура может повторяться при все большем участии частиц, вырастая в трех направлениях. Хромосомное волокно (образование, в котором запечатлена информация о наследуемых признаках) представляет собой результат другого пути. Молекула может переходить в апериодическое твердое тело, в апериодический кристалл.
«Другой путь, — пишет Шредингер, — это построение все более и более увеличивающегося агрегата без скучного механизма повторения. Это случай все более и более сложной органической молекулы, в которой каждый атом, каждая группа атомов играет индивидуальную роль, не вполне равнозначную роли других атомов и групп. Мы можем совершенно точно назвать это образование апериодическим кристаллом или твердым телом и выразить нашу гипотезу словами: «…целое хромосомное волокно представляет собой апериодическое твердое тело»[54].
Далее Шредингер разъясняет, почему очень небольшая частица может вместить в себя зашифрованную информацию, определяющую развитие организма. Причина состоит в большом числе комбинаций при сравнительно небольшом числе атомов в молекуле. Поэтому именно молекула (апериодический кристалл, где возможны самые различные группировки одних и тех же атомов) может определить однозначным образом вариант развития организма из колоссального числа возможных вариантов. «Хорошо упорядоченное объединение атомов, наделенное достаточной устойчивостью для длительного сохранения своей упорядоченности, представляется единственно мыслимой материальной структурой, в которой разнообразие возможных («изомерных») комбинаций достаточно велико, чтобы заключить в себе сложную систему детерминаций в пределах минимального пространства»[55].
Шредингер приводит пример азбуки Морзе. Точки и тире, всего два знака в группах из двух, трех и четырех знаков дают 30 сочетаний, 30 букв. Но три различных знака в группах по десять дали бы 30 тыс. комбинаций, а число сочетаний пяти разных знаков в группах по 20 достигло бы 372 529 029 846 191405.
Шредингер энергично подчеркивает отличие молекулы, в которой запечатлен код наследственности, от статистического ансамбля физики. Хромосомные молекулы «представляют наивысшую степень упорядоченности среди известных нам ассоциаций атомов (более высокую, чем у обычных периодических кристаллов) в силу той индивидуальной роли каждого атома и каждого радикала, которую они здесь играют»[56].
Это очень далеко от статистической физики, где «индивидуальная роль каждого атома» пренебрежима и упорядоченность может быть реализована, когда в игру вступает колоссальное число индивидов. Следует заметить (об этом речь будет идти в последних главах этой книги), что «индивидуальная роль каждого атома» исключается не только статистической физикой. Роль каждого индивида отрицается любой классически статистической концепцией, и, чтобы обобщить характеристику, данную Шредингером, достаточно поставить слово атом в кавычки.
Однако Шредингер не считает принцип «индивидуальной роли атома» нефизическим. «Новый принцип — это подлинно физический принцип; на мой взгляд, он не что иное, как опять-таки принцип квантовой теории»[57].
Приведенные соображения исходят из очень общих постулатов, но принципиально допускают возможность экспериментальной проверки. Такая возможность реализовалась в 50—60-е годы с помощью электронного микроскопа и меченых атомов. Об электронном микроскопе уже говорилось, по поводу меченых атомов следует напомнить, что ядерные реакции (в том числе деление ядер) приводят к появлению радиоактивных ядер. По излучениям таких меченых атомов их легко обнаружить и идентифицировать с теми атомами, которые были помещены в те или иные ткани организма. Меченые атомы позволяют проследить миграцию различных веществ в организме и на основе таких наблюдений определить физиологические и патологические процессы вплоть до микропроцессов в клетках.