Литмир - Электронная Библиотека
A
A

Приведем следующий пример. В ядерной физике рассматривается такая ситуация, когда частица, чтобы приблизиться к ядру атома, должна преодолеть сильное отталкивайие, должна преодолеть потенциальный барьер, больший, чем ее кинетическая энергия. Это так же невозможно, как невозможно для шара, скатившегося с холма, взобраться на вершину более высокого холма и перекатиться через его вершину. Невозможно с классической точки зрения. В квантовой физике речь идет о вероятностях, и невозможность оказывается малой вероятностью проникновения частицы в атомное ядро. Но при бомбардировке большим числом частиц такие маловероятные проникновения будут иметь место, причем они вызовут ядерные реакции, чрезвычайно важные для новой неклассической техники.

Нечто аналогичное происходит и в других областях. Технически применимые процессы (и тем более процессы, которые в принципе, пока еще неопределенным образом, могут оказаться применимыми в будущем) нельзя найти, если не перейти к квантовым неклассическим представлениям.

В 40-е годы радиотехника вплотную подошла к задачам, которые нельзя было решить без квантовых представлений. В обычных радиоприемниках прием передачи затрудняется изменением частоты, «наползанием» одной станции на другую, вообще тем обстоятельством, что «спектральная линия» радиопередатчика широка, т. е. интервал частот очень велик.

Многие применения радиотехники (в их числе — наиболее перспективные, определяющие будущее) требуют, чтобы интервал частот электромагнитных колебаний при радиопередаче был очень узким, чтобы радиостанции не мешали друг другу при одновременной работе. В спектроскопии существует представление о монохроматическом свете с очень узкой спектральной полосой. Теперь понятия спектроскопии проникли в радиофизику. Оказалось, что. при разработке новых методов получения весьма монохроматических и стабильных по частоте колебаний нужно пользоваться понятиями квантовой физики. Дело в том, что широкие интервалы частот объясняются макроскопическим характером передатчиков. Этот макроскопический характер радиотехники заслоняет дискретный характер излучения, существование отдельных квантов электромагнитного поля. В 50-е годы стали подходить к очень слабым сигналам, представляющим собой весьма стабильные по частоте волны с очень малым разбросом частот. Их научились усиливать. Но теория таких сигналов оказалась в значительной мере за пределами классической физики. За ее пределами оказались новые принципы генерации когерентного излучения квантовых систем, которое имеет не только одну и ту же частоту, но и одну й ту же фазу в каждый момент.

Ключом к получению монохроматического и когерентного излучения были созданные в середине 50-х годов приборы, основанные на индуцированных переходах атомных систем с одних энергетических уровней на другие. Теория таких переходов — квантовая теория. Она вытекает из модели Бора, а сами переходы были предсказаны Эйнштейном. Речь идет о так называемом индуцированном излучении. В 1916 г. Эйнштейн опубликовал статью «Испускание и поглощение излучения по квантовой теории» [51]. В ней речь идет о квантовой системе, т. е. системе частиц, которая испускает и поглощает кванты излучения, изменяя свою структуру. В качестве конкретного примера квантовой системы можно взять атом, состоящий из ядра и электронов и обладающий двумя уровнями энергии. Эти уровни можно представить себе как две электронные орбиты, одна из которых ближе к ядру (нижний уровень), а другая дальше от него (верхний уровень). Разумеется, можно было бы взять не атом, а молекулу, которая при одной конфигурации атомов обладает более высокой, а при другой — меньшей энергией. Но мы будем пока рассматривать в качестве примера излучения не молекулы, а атома.

Переходы электронов с одного уровня на другой могут быть спонтанными, но могут быть вызваны и действием излучения, потока фотонов. Существует двоякое взаимодействие атома с излучением. В одном случае фотон просто поглощается атомом, а в другом — атом излучает новый фотон. В 1927 г. Дирак заметил, что новый фотон неотличим от старого, он обладает той же энергией и тем же направлением. Если на верхнем уровне находится большое число электронов, они все синхронно переходят на более низкий уровень и тогда излучаются фотоны той же энергии и того же направления, но таких фотонов будет больше, чем в падающем излучении. Таким образом, создается возможность усиления излучения-за счет индуцированного излучения квантовых систем. Подобная возможность реализована в лазерах (название «laser» составлено из начальных букв английского названия эффекта: light amplification by stimulated emission of radiation — усиление света вынужденным излучением).

Лазеры — это приборы, основанные на принципе индуцированного излучения в оптическом диапазоне. Этим они отличаются от мазеров, использующих такое излучение в радиодиапазоне и представляющих собой другую ветвь квантовой электроники. Применение индуцированного излучения в оптическом диапазоне ближе и более явным образом связано с неклассической физикой, с квантовыми представлениями, чем в радиодиапазоне.

В чем же состоят особенности этого светового луча, усиленного вынужденным, индуцированным излучением, позволяющие видеть в нем провозвестника новой эпохи научного и технического прогресса?

Это прежде всего узкая полоса частот, высокая монохроматичность излучения. Далее, когерентность — тот факт, что вынужденное, индуцированное излучение разных атомов происходит согласованно, в одной фазе. Лазер позволяет получить мощное монохроматическое излучение. Свойством лазерного луча является его острая направленность, тот факт, что луч лазера не расширяется, вернее, очень мало расширяется. Лазер может давать пучок света большой мощности и высокой направленности излучения[52].

В этой книге последовательно, с различных сторон раскрывается концепция начальных условий и ноозон. Общая тенденция неклассической науки и ее применений состоит в переходе за пределы классической иерархии дискретных частей вещества. Эта классическая иерархия оканчивалась, с одной стороны, атомами, перегруппировка которых создает разнообразие химических соединений, а с другой — механикой небесных тел. Ноозоной этой иерархии были перегруппировки атомов в молекулах в макроскопических масштабах, т. е. химические процессы и движения макроскопических тел в узком слое литосферы, гидросферы и атмосферы. В этом слое и создалась то, что В. И. Вернадский назвал ноосферой. Ноосфера, т. е. совокупность скомпонованных макроскопических структур, охватывала очень небольшой интервал атомных, молекулярных и макроскопических процессов. Этот интервал был ограничен небольшими концентрациями энергии.

Наряду с ноозоной иерархии дискретных частей вещества существовала ноозона континуальных процессов. Это совокупность целесообразно скомпонованных гидродинамических процессов, тепловых потоков и других перебросок энергии (электрический ток), включая радиосигналы, акустические и оптические явления. Здесь атомистические представления, констатации существования атомов и молекул не были существенными для целесообразной компоновки макроскопических процессов. Атомистические представления не фигурировали в качестве целевых представлений, определяющих выбор тех или иных начальных условий. В свою очередь конкретные представления, определяющие ноозоны дискретной иерархии, не включали континуальных концепций. Целесообразная компоновка дискретных тел могла игнорировать континуальную картину мира, а компоновка континуальных процессов — атомистическую.

Классическая иерархия дискретных частей вещества оканчивается атомным миром, где дискретные элементы атома обладают явными и существенными волновыми, континуальными свойствами. Классическая иерархия континуальных процессов оканчивается там, где излучения обладают явными и существенными корпускулярными свойствами. Неклассические зоны находятся в ультра-микроскопических порах классической иерархии, и они же объемлют ее: когда речь идет о возникновении и гибели звезд и галактик, наука уже не может обойтись без неклассических представлений.

вернуться

51

«Verhandl. Dtsch. Phys. Ges.», 1916, 18, S. 318–323; А. Эйнштейн. Собрание научных трудов, т. III, стр. 386–392.

вернуться

52

Это различие весьма отчетливо показано в статье Н. В. Карлова и А. М. Прохорова «Лазеры и научно-техническая революция» в сборнике «Будущее науки» (вып. IV. М., 1971, стр. 20–33). В этой же статье содержится краткий, но очень содержательный и доступный широким кругам очерк перспектив применения лазеров, в частности таких важных, как возможности их применения для управляемых термоядерных реакций, в астрофизике, в молекулярной биологии, в голографии.

34
{"b":"583270","o":1}