Литмир - Электронная Библиотека
Содержание  
A
A

Педантичные немецкие исследователи сопоставили разные способы получения энергии. Как они это сделали? Сначала оценили негативные последствия в расчёте на выработку одного миллиарда киловатт-часов для населения Западной Европы, около 480 миллионов человек. А потом весь негатив пересчитали на количество потерянных лет жизни. Для угольной электростанции учли потери от аварий на шахтах, карьерах и железных дорогах, по которым перевозят уголь, а также болезни населения от выбросов электростанций. Правда, выбросы европейских ТЭС, в отличие от российских, очищают от сернистого газа и оксидов азота. Для атомных электростанций учли последствия облучения персонала, причём не только на самой АЭС, но и на предприятиях ЯТЦ, а также облучение населения, плюс последствия возможных аварий. Результаты этих расчётов можно увидеть на рис. 17.1 (спаренные столбики разной высоты означают использование различных расчётных методик).

Занимательная радиация. Всё, о чём вы хотели спросить: чем нас пугают, чего мы боимся, чего следует опасаться на самом деле, как снизить риски - _36.png

Рис. 17.1 Общественный риск для здоровья от разных энергоисточников [5]

Вывод: чистой и безопасной энергии не существует. Но ядерная энергетика выигрывает у любых, даже газовых электростанций.

Теперь о радиационной безопасности при работе АЭС. Вы знаете, что предел техногенного облучения для населения составляет 1 мЗв/год. Чтобы уложиться в эту норму, иногда между АЭС и селитебной зоной (то есть территорией жилых застроек – от слова «селиться») устанавливают санитарно-защитную зону (СЗЗ). Эта «ничейная» земля, не более 3 км, является дополнительным барьером защиты населения от облучения. Поскольку в санитарно-защитной зоне никто не проживает, выполнение нормы гарантируется.

Но такой подход касается лишь территорий, где радиационный фон сложился давно, десятки лет назад. Для современных АЭС установлены более жёсткие ограничения на облучение населения, чем предусмотрено НРБ-99/2009 (1 мЗв/год). Санитарными правилами введены так называемые квоты на облучение населения от выбросов в атмосферу и жидких сбросов в водоёмы. Для любой действующей станции суммарная (от выбросов и сбросов АЭС) квота равна 250 мкЗв/год, а для проектируемых и строящихся АЭС – 100 мкЗв/год. Это соответственно в 4 и 10 раз ниже предела дозы техногенного облучения населения [6].

Но как проверить – действительно ли эти нормативы не превышаются?

С этой целью вокруг всех АЭС организована так называемая автоматизированная система контроля радиационной обстановки (АСКРО). На прилегающей территории устанавливают десятки датчиков для измерения мощности дозы гамма-излучения. Сведения от них каждый час передаются в кризисный центр концерна Росэнергоатом. И тут же, в режиме реального времени, размещаются на сайте www.russianatom.ru. Сегодня каждый человек может зайти в интернет и ознакомиться с радиационной обстановкой возле любой атомной станции. Радиационный фон – информация открытая, засекречивать её нельзя по закону. Поэтому скрыть радиационную аварию или превышение допустимого уровня радиации невозможно.

Занимательная радиация. Всё, о чём вы хотели спросить: чем нас пугают, чего мы боимся, чего следует опасаться на самом деле, как снизить риски - i_078.png

Однако на самом деле у атомных станций имеются целых две ахиллесовы пяты. Только речь идёт вовсе не об экологии или радиоактивном фоне.

Первое. Да, при нормальной работе АЭС всё замечательно. Но в случае тяжелой аварии последствия могут оказаться куда хуже, чем при авариях на электростанциях других типов. Поэтому проблема номер один – это безопасность атомных станций.

А проблема номер два – отработавшее топливо. ОЯТ – это двадцать тонн с каждого реактора ежегодно. Всего-то? Но это не безобидные головёшки, а сотни «хиросим». Об отработавшем топливе мы побеседуем в другой раз, когда будем обсуждать проблемы РАО, а сейчас обсудим вопросы безопасности атомных станций.

Вспомним, какие последствия имела чернобыльская катастрофа. Да, средние дозы, полученные населением СССР и Европы, оказались невысокими. Но это средняя температура по палате. А болезни сотен тысяч ликвидаторов, пусть и обусловленные не только радиацией? А сотни тысяч людей, переселённых с родных мест? А гигантские расходы на ликвидацию последствий, которые «съели» выгоду от использования атомной энергии за много лет? А радиофобия у всего советского населения? А рост антиядерного движения?

Занимательная радиация. Всё, о чём вы хотели спросить: чем нас пугают, чего мы боимся, чего следует опасаться на самом деле, как снизить риски - i_079.png

Дело в том, что дочернобыльские ядерные реакторы были основаны на технических принципах защиты [7]. Для предотвращения аварии требовалось принимать специальные меры. Иначе говоря, – строжайший контроль со стороны человека. А где имеется человеческий фактор – там угроза аварии остаётся.

Ведь и в Чернобыле реактор взорвался не сам по себе. По сути его взорвали операторы по приказу руководства станции. Пусть и с благими намерениями, ради завершения программы испытаний к предстоящим первомайским праздникам. Но были последовательно отключены все (!) системы защиты – в нарушение множества правил и инструкций. Но главное даже не в том, что инструкции были хорошие, а операторы действовали неверно. Как заметил академик Александров: «Человек совершил, а техника – позволила». Система безопасности, которая разрешила человеку себя отключить – беспомощная.

Другое дело – физические принципы защиты. Как плавкие предохранители в электротехнике. Превысил ток допустимое значение – металл расплавился – электрическая цепь разорвалась: сама собой, без участия человека.

Вот и ядерный реактор в идеале должен быть самозащищённым, с внутренне присущей безопасностью. И в этом направлении сделано немало. Сегодня ядерные реакторы снабжены четырьмя независимыми системами автоматической защиты, отключить которые невозможно. Используются пассивные системы безопасности, основанные на физических принципах защиты. Например, стержни аварийной защиты, способные погасить цепную реакцию, расположены уже не под блоком, а над ним. Подвешенные на электромагнитах, в случае отключения электроэнергии, они сами падают в активную зону и глушат реактор.

Но и такие системы не дают стопроцентной гарантии безопасности. В том числе – защиты от хорошо подготовленного террористического акта или военного нападения.

В этой связи современные реакторы (их называют «реакторы поколения 3+») снабжены дополнительными системами, способными смягчить последствия серьёзной аварии. Что это за системы?

Под реактором устанавливается так называемая ловушка расплава. А над реактором – герметичная защитная оболочка (контайнмент), которая в случае тяжёлой аварии не позволит радиоактивным веществам выйти наружу.

Правда, дополнительные системы защиты приводят к удорожанию проектов на 30 %. Но, как изрёк Уинстон Черчилль, правда, по другому поводу: «За безопасность надо платить, за отсутствие безопасности – расплачиваться».

Послушайте, такие проблемы! А, может, правы «зелёные»? Взять да и закрыть все атомные станции?

Занимательная радиация. Всё, о чём вы хотели спросить: чем нас пугают, чего мы боимся, чего следует опасаться на самом деле, как снизить риски - i_080.png

Сегодня это почти невозможно. Почему же? Мы, выражаясь конкретно, попали. Существует уровень развития техники, за которым людей уже ничто не остановит. К примеру, всем известно, что автомобиль – штука зловредная, враг номер один городской экологии. И чрезвычайно опасная: в автомобильных авариях только в России каждый год гибнет тридцать тысяч людей.

Представьте картину: через всю Россию с Запада на Восток проложена автострада, а вместо дорожных знаков «вдоль дороги мертвые стоят» – жертвы дорожно-транспортных происшествий только одного года. Через каждые триста метров! А за десять лет – через каждые тридцать метров! Только вдумайтесь: за десять лет российские автомобили убили больше людей, чем атомная бомбардировка Хиросимы и Нагасаки, вместе взятых! И что? Мы обсуждаем запрет автомобилей? Да как это – без машины? Не, наши люди на такси в булочную не ездят.

30
{"b":"492348","o":1}