Литмир - Электронная Библиотека
Содержание  
A
A

Заметим, что в том же, 1759 г., в котором вышло сочинение Эпинуса, англичанин Саймер выдвинул дуалистическую теорию электричества, предположив существование двух противоположных родов электричества: одного — аналогичного электричеству, получающемуся на стекле при его натирании, другого — аналогичного электричеству, получающемуся при электризации янтаря («смоляное» электричество). По унитарной теории Франклина — Эпинуса «любое тело, предоставленное самому себе, самопроизвольно всегда возвращается в такое состояние, когда оно содержит точно такое количество электрической жидкости, какое достаточно для достижения равновесия между силой притяжения или силой отталкивания».

Эпинус разбирает возможные случаи взаимодействия тел. При этом он высказывает предположение, что силы отталкивания электрических или магнитных масс уменьшаются с увеличением расстояния между ними.Хотя вид этой функциональной зависимости ему неизвестен, однако он признает, что «охотно утверждал бы, что эти величины изменяются обратно пропорционально квадратам расстояний». Эту зависимость ему подсказывает аналогия . с законом тяготения. Эпинус указывает, что наблюдающиеся на опыте притяжения ненаэлектризованных тел к наэлектризованным объясняются тем, что «это тело благодаря одному лишь приближению к другому наэлектризованному телу само может стать наэлектризованным». Это явление электрической индукции было известно уже Рихману, его описали в 1754 г. англичанин Джон Кантон (1718—1772) и в 1757 г. немец Иоганн Карл Вильке (1732-1796).

Эпинус исследовал экспериментально электрическую индукцию в проводниках и изоляторах, при этом он установил, что в изоляторах она выражена слабее, чем в проводниках. Таким образом, Эпинус по сути дела открыл поляризацию диэлектриков.

Курс истории физики - img_75.jpeg

Крутильные весы Кулона

В своем трактате Эпинус выдвинул положение об электростатическом равновесии тела, утверждая, что тело стремится самопроизвольно перейти в такое состояние, в котором количество электричества в нем будет «естественным». Как уже было сказано, он подробно анализирует силы, действующие на тело, постулируя, что равновесие электричества в нем достигается, когда сумма притягательных и отталкивательных сил равна нулю. Но он не сумел понять закона распределения электричества в проводниках и наблюдения Франклина, что «пробковые шарики не подвергали сь BOB се дей стви ю электриче ства металлического сосуда, внутри которого они находились». Естествоиспытатель и философ Пристли, разделяющий со шведом Шееле славу открытия кислорода, правильно оценил важность эксперимента Франклина. Этот эксперимент получает объяснение, если предположить, что силы взаимодействия электрических частиц обратно пропорциональны квадрату расстояния. Пристли высказал это предположение в своей «Истории электричества» в 1767 г., а в 1771 г английский лорд Кавендиш впервые экспериментально показал, что силы взаимодействия электрических зарядов подчиняются закону

Курс истории физики - img_76.jpeg

где n=2±1/50

Опыт Кавендиша заключался в следующем. Шар диаметром 12, 1 дюйма, покрытый оловянной бумагой (станиолем), помещался внутри другого шара 13,3 дюйма в диаметре так, чтобы он был изолирован от наружного шара. Наружный шар состоял из двух полушарий, также покрытых станиолем, которые можно было раздвигать. Через небольшое отверстие в наружном шаре можно было устанавливать проводящий контакт между ним и внутренним шаром с помощью проволочки, привязанной к шелковине. В начале опыта, когда полушария сближены и установлен проводящий контакт, наружную сферу заряжают от лейденской банки Затем с помощью шелковинки контактную проволоку удаляют, раздвигают наружные полушария и исследуют электризацию внутреннего шара.

Электроскоп не обнаружил заряда этого шара. Кавендиш исследовал чувствительность электроскопа и показал, что он мог бы обнаружить заряд внутреннего шара, равный 1/60 заряда внешней сферы. Отсюда Кавендиш вывел, что сила взаимодействия электрических частиц убывает с расстоянием по закону

Курс истории физики - img_77.jpeg
,

где n отличается от двух не более чем на1/50.

Генри Кавендиш (1731-1810) был богатым английским лордом, занимавшимся физикой и химией в качестве «хобби», как сказали бы теперь. В 1766 г он открыл водород и получил углекислый газ, он показал, что вода получается при горении водорода. Кавендиш с помощью крутильных весов определил постоянную закона тяготения и тем самым «взвесил» Землю. Одинокий, чудаковатый джентльмен, он неохотно публиковал свои работы, и в частности свои электрические исследования. Они оставались неизвестными до 1879 г., когда их опубликовал Максвелл, первый профессор лаборатории Кавендиша, открытой на средства потомка Генри Кавендиша в Кембридже в 1874 г.

Максвелл повторил опыты Кавендиша с электрометром Томсона и показал, что п может отличаться от 2 не более чем на 1/21600

«Что касается скрытности Кавендиша, — писал в 1891 г. известный электрофизик Хевисайд, — то она совершенно непростительна; это грех» Этот «грех» стоил Кавендишу славы открывателя точного закона электрических взаимодействий, который навсегда вошел в науку под названием закона Кулона.

Французский военный инженер, а с 1781 г. член Парижской Академии наук Шарль Огюстен Кулон (1736-1806) в 1777 г. исследовал кручение волос, шелковых и металлических нитей. Результатом этих исследований явилось открытие закона кручения :

Курс истории физики - img_78.jpeg

где φ —угол кручения, Р — закручивающая сила, l - длина нити, r - ее радиус.

В 1784 г. Кулон сконструировал чувствительный прибор — крутильные весы. С помощью этих весовой открыл законы электрических и магнитных взаимодействий. Его опыты и выводы из них опубликованы им в 1782—1785 гг. в семи мемуарах. Аппарат Кулона представлял собой стеклянный цилиндр с измерительной шкалой по окружности, в крышке цилиндра имелись центральное и боковое отверстия. В центральное отверстие пропускалась серебряная нить, закрепленная на измерительной головке и проходящая по оси высокого стеклянного цилиндра, заканчивающегося упомянутой головкой. Нить несла легкое стеклянное коромысло, на котором находились шарик и противовес. В боковое отверстие пропускался стерженек, несущий наэлектризованный шарик.

В первом мемуаре 1785 г. Кулон исследовал отталкивающую силу и нашел, что при угловых расстояниях между шариками (которые первоначально при контакте получают одинаковые заряды) 36°, 18°, 9° нить закручивалась соответственно на 36°, 144°, 576°, т. е. силы росли обратно пропорционально квадратам расстояний.

Во втором мемуаре Кулон нашел закон взаимодействия магнитных полюсов.

Существенным моментом в работе Кулона было установление метода измерения количества электричества и количества магнетизма (магнитных масс). В научной системе единиц законы Кулона дают основную базу системы электрических и магнитных единиц. После Кулона стало возможным построение математической теории электрических и магнитных явлений.

Глава вторая. Развитие основных направлений физики в XIX в.

Развитие механики в первой половине XIX столетия

Прежде чем перейти к описанию событий в истории физики началаХ1Х столетия, расмотрим коротко развитие механики в первой половине XIX в.

Трудами Эйлера, Лагранжа и других математиков и механиков XVIII в. сформировалась та отрасль математического естествознания, которая получила название теоретической механики. В качестве таковой она выделилась из физики, и ее развитие было более тесно связано с развитием математики, чем физики.

В историю механики существенный вклад внесли и русские ученые: математик и механик М. В. Остроградский (1801-1862), имя которого встречается в физике в связи с теоремой Остроградского—Гаусса, П.Л.Чебышев (1821— 1894), А.М.Ляпунов (1857-1918) и многие другие.

54
{"b":"285927","o":1}