Литмир - Электронная Библиотека
Содержание  
A
A

Об истории открытия закона излучения и возникновения гипотезы квантов Планк рассказывал неоднократно. Об этом он говорил в своей нобелевской речи «Возникновение и постепенное развитие теории квантов», произнесенной в Стокгольме 2 июля 1920 г. Об этом рассказывается и в изданной посмертно в 1948 г. «Научной автобиографии» Планка.

Как уже было сказано, Планк приступил к проблеме излучения в 1897 г. До этого наибольших успехов в решении этой задачи добился В. Вин. В 1893 г. он нашел формулу для объемной плотности невидимого излучения в виде функции

Курс истории физики - img_278.jpeg

где f — функция, остающаяся неопределенной. Из этой формулы вытекал закон смещения λ mах Т = const.

В 1896 г. Вин пошел дальше и написал функцию в явном виде. Его закон имел вид:

Курс истории физики - img_279.jpeg

Казалось бы, задача была решена. Но, во-первых, вывод Вина с теоретической точки зрения не был безупречным, и Рэлей писал в 1900 г., что «с теоретической стороны этот результат представляется мне немногим более, чем догадкой»; во-вторых, — и это главное — формула Вина хорошо оправдывалась в области высоких частот (коротких волн), но в измерениях с инфракрасными волнами, выполненными Рубенсом и Курльбаумом, «обнаружилось совершенно отличное от закона Вина поведение».

Во всяком случае Планк пошел своим путем. Он рассматривал модель черного тела, представлявшую собой совокупность электромагнитных осцилляторов, излучающих и поглощающих электромагнитную энергию каждый определенной частоты. Введя гипотезу «естественного излучения», Планк привел эту систему в соответствие с необратимостью термодинамических процессов, несмотря на то что излучение описывается обратимыми уравнениями электродинамики. 15 мая 1899 г. Планку удалось найти соотношение между объемной плотностью излучения и средней энергией осциллятора:

Курс истории физики - img_280.jpeg

где U(Т) — средняя энергия осциллятора.

Планк установил соотношение между энергией и энтропией осциллятора, в основе которого, по-видимому, лежит закон Вина. Но как раз в это время измерения Рубенса и Курльбаума показали неприменимость закона Вина для длинных волн, и это поставило Планка перед трудной проблемой. Планк построил из связи энтропии и энергии некоторую величину R, которая в области применимости закона Вина оказывается пропорциональной энергии. Однако в областях длинных волн следовало принять R пропорциональной квадрату энергии.

«Таким образом, — вспоминал Планк, — первыми опытами для функции R было установлено два простых предельных вида: при малых энергиях R пропорциональна энергии, а при больших энергиях — квадрату энергии... Дело теперь состояло в том, чтобы найти точное выражение для R, которое давало бы закон распределения энергии, совпадающий с экспериментально установленным. Теперь ничего другого не оставалось, как приравнять в общем случае величину R сумме двух членов — одного линейного, а другого квадратного по энергии, так что при малых энергиях решающее значение имел первый член, а при больших — второй.

При этом была найдена новая формула для излучения, которую я представил на заседании Берлинского физического общества 19 октября 1900 г. и рекомендовал проверить».

Формула, найденная Планком, имела вид:

Курс истории физики - img_281.jpeg

Рубенс немедленно после заседания начал сравнивать формулу Планка с данными его измерений. Утром он пришел к Планку и сообщил, что повсюду было найдено удовлетворительное совпадение его формулы с опытом. Но, как признавался Планк, метод нахождения формулы придавал ей «только формальный смысл удачно угаданного закона». И здесь Планк впервые обратился к статистике, к той самой статистике, с которой Михельсон начал поиски закона излучения, используя идеи Больцмана о связи энтропии и вероятности. Этой зависимости Планк придал следующий вид:

S = klnW,

где k — постоянная Больцмана, хотя ввел и впервые вычислил эту величину Планк. Для того чтобы ввести вероятность в закон излучения, Планку пришлось принять гипотезу, что каждый осциллятор излучает и поглощает энергию конечными порциями. Эту порцию Планк положил пропорциональной частоте ε = hν , где h — некоторая универсальная постоянная, которую Планк назвал «элементарным квантом действия». «Таким образом, — писал Планк, — и для излучения было установлено существование энтропии как меры вероятности в больцмановском смысле».

Однако при подсчете вероятности Планку пришлось отойти от метода Больцмана, и только значительно позже выяснился смысл этого отхода: статистика квантов не является больцманов-ской. 14 декабря 1900 г. Планк доложил Берлинскому физическому обществу о своей гипотезе и новой формуле излучения

Курс истории физики - img_282.jpeg

Из этой формулы, справедливой во всех областях спектра, получались и закон Стефана — Больцмана и закон смещения Вина. Для больших частот она переходила в формулу Вина, а для малых частот — в формулу:

Курс истории физики - img_283.jpeg

данную Рэлеем в июле 1900 г. в небольшой статье «Замечания о законе черного излучения». Рэлей вывел эту формулу, применяя закон равномерного распределения энергии по степеням свободы.

В 1905 г. он и независимо от него Джине показали, что классическая статистика приводит не к формуле Планка, а именно к формуле Рэлея, которая стала называться с тех пор законом Рэлея — Джинса.

История закона излучения продолжалась еще и в XX в. Сам Планк как-то пытался ввести свою гипотезу в русло классических представлений. Однако это ему не удалось.

Гипотеза квантов захватывала все новые и новые области, став «царицей» современной физики.

Открытие рентгеновских лучей, радиоактивности, электрона, радия, кванта действия определило характер развития физики XX в. Начиналась научная революция.

Глава четвёртая. Первый этап революции в физике

Открытие радиоактивных преврещений. Идея атомной энергии

Открытия конца XIX в. и первого пятилетия XX в. привели к революции в физическом миропонимании. Рухнуло представление о неизменных атомах, о массе как неизменном количестве вещества, о законах Ньютона как незыблемых устоях физической картины мира, об абсолютных пространстве и времени, в непрерывных процессах была обнаружена дискретность, прерывность.

Представление о неизменных, неразрушимых атомах, существовавшее в физике и философии со времен Демокрита, было разрушено открытием радиоактивности. Уже в самом начале исследований радиоактивности Мария Склодовская-Кюри писала: «Радиоактивность урановых и ториевых соединений представляется атомнымт, свойствами... Я исследовала с этой точки зрения урановые и ториевые соединения и произвела множество измерений их активности при различных условиях. Из совокупности этих измерений выходит, что радиоактивность этих соединений действительно есть атомное свойство. Она представляется здесь связанной с наличностью атомов обоих рассматриваемых элементов и не уничтожается ни переменой физического состояния, ни химическими преобразованиями».

Таким образом, оказалось, что атомы урана, тория и позднее открытых полония и радия не являются мертвыми кирпичиками, а обладают активностью, испускают лучи. Природа этих лучей была исследована рядом ученых, но первым обнаружил сложный состав радиоактивных лучей Резерфорд. В опубликованной в 1899 г. статье «Излучение урана и вызываемая им электропроводность» он показал электрическим методом, что излучение урана имеет сложный состав.

Одну из пластин конденсатора покрывали порошком солей урана и соединяли с полюсом батареи, вторую соединяли с квадрантом квадрантного электрометра, другую пару квадрантов которого подключали к заземленному полюсу батареи. Измеряли скорость разряда, обусловленного ионизирующим действием урановых лучей. Порошок накрывали тонкими листами металлической фольги. «Эти опыты,— писал Резерфорд, — показывают, что излучение урана неоднородно по составу, — в нем присутствуют по крайней мере два излучения различного типа. Одно очень сильно поглощается, назовем его для удобства а-излучением, а другое имеет большую проникающую способность, назовем его Р-излучением».

120
{"b":"285927","o":1}