Примеры неопровержимых оснований можно приводить бесконечно. Так, можно доказать, что пропавший человек мертв, показав, что он отправился в плавание на судне, уничтоженном в море взрывом, при котором никто не мог спастись. Сходным образом мы можем доказать, что наш сосед мистер Браун не имеет права голосовать, показав, что он не достиг двадцати одного года, а также закон, запрещающий голосовать лицам моложе этого возраста.
Для такой области, как математика, доказательство, несомненно, является неотъемлемым. Однако в данном случае следует провести различие между прикладной и чистой математикой. В прикладной математике, как и в вышеприведенных примерах, мы предполагаем, что определенные суждения, например законы механики, являются истинными; и мы доказываем истину других суждений, показывая, что они с необходимостью следуют или же математически выводимы из суждений, истинность которых мы заранее предполагаем. В чистой математике, с другой стороны, мы демонстрируем лишь то, что наши исходные допущения с необходимостью влекут или имеют следствием теоремы, которые выводимы из этих допущений. Мы не задаемся вопросом о том, являются ли наши заключения, равно как и наши аксиомы или постулаты, в действительности истинными.
Для удобства можно было бы использовать слово «доказательство» для операций из области прикладной математики (в которых мы заключаем, что некоторое суждение является истинным), а такими терминами, как «вывод» или «демонстрация», будем обозначать операцию, которая только устанавливает импликацию, или необходимую связь между посылкой и заключением, безотносительно истинности или ложности того и другого. Данная терминология позволила бы нам говорить, что суждение доказано, когда и только когда оно следует из посылки, которая сама является истинной. Однако в чистой математике так часто принято говорить о «доказательстве» теорем, что тщетно пытаться что-либо изменить. Поэтому термин «доказательство» можно, не опасаясь, использовать и в чистой математике, не забывая, однако, что доказываем мы всегда исключительно импликации, т. е. то, что если одни суждения истинны, то определенные другие суждения должны быть истинными. В конце концов, именно с этим уровнем доказательства главным образом связана логика.
Таким образом, во всех случаях полного основания, или доказательства, заключение является следствием посылок, а рассуждение или умозаключение от посылок к заключению называется дедуктивным. Мы выводим одно суждение из другого обоснованно, только если существует объективное отношение импликации между первым суждением и вторым. Поэтому важно различать умозаключение, являющееся временным процессом, и импликацию, являющуюся объективным отношением между суждениями. Импликация может сохраняться, даже если мы не знаем, как вывести одно суждение из другого. Таким образом, чтобы умозаключение было обоснованным, между суждениями должна существовать импликация. Существование же импликации не зависит от наличия психологического процесса умозаключения.
§ 3. Природа логической импликации
Пытаясь получить полное доказательство суждений, имеющих практическую важность, мы всегда сталкиваемся с двумя актуальными вопросами:
1. Являются ли истинными суждения, выступающие в качестве оснований?
2. Является ли отношение между заключениями и основаниями, или посылками, таким, что первые с необходимостью следуют и, следовательно, могут быть правильно выведены из последних?
Первый вопрос ставит проблему фактического, или материального, характера, и ответ на него не может быть получен только с помощью логики без привлечения всех наук и всего общеизвестного знания. Как отдельная наука, логика исследует только второй вопрос, а именно отношение импликации между суждениями. Таким образом, особая задача логики заключается в изучении условий, при которых одно суждение с необходимостью следует и, следовательно, может быть выведено из одного или более суждений, безотносительно фактической истинности последних. Поскольку ряд суждений нетрудно объединить в единое суждение, то можно сказать, что всякий пример импликации, или логического следования, относится к двум суждениям, которые можно наиболее точно обозначить как условное и имплицируемое[3], однако, как правило, они называются антецедентом и консеквентом или же посылкой и заключением. При этом следует отметить, что, используя термины «антецедент» и «консеквент» или выражение «логически следует», мы подразумеваем абстрактное отношение, которое, подобно отношению части и целого, непосредственно не указывает ни на какую временную последовательность. Логические следствия некоторого суждения – не явления, следующие за ним во времени, а скорее составные элементы его значения. Иногда наше осознание посылок предшествует осознанию заключения, однако мы зачастую точно так же сначала осознаем заключение и только после этого отыскиваем посылки, из которых оно следует.
Рассмотрим отношение импликации более подробно.
Логическая импликация не зависит от истинности наших посылок
Импликация является особым логическим отношением, которое может существовать либо 1) между ложными суждениями, либо 2) между ложным суждением и истинным, а также 3) может не существовать между истинными суждениями.
1. Рассмотрим следующий аргумент: «Если Спарта была демократией и ни в одной демократии не существует короля, то, следовательно, в Спарте не было короля». Ложность суждения «Спарта была демократией» не мешает ему обладать некоторыми следствиями, равно как и иметь определяющее значение в конкретных логических следованиях.
В обыденной жизни самым распространенным является аргумент, устанавливающий логические следствия для условных суждений, не соответствующих фактам. Если бы не было смерти, то не было бы кладбищ, надгробных речей и т. п. Все наши сожаления опираются на выведение следствий из суждений, в которых утверждается то, что могло бы быть, но чего в действительности не произошло.
Не любить бы нам так нежно,
Безрассудно, безнадежно,
Не сходиться, не прощаться,
Нам бы с горем не встречаться!
[4]Огромное заблуждение считать, как многие легкомысленно и делают, что при рассуждении, которое называется научным, мы исходим только из фактов или истинных суждений. Данное убеждение не учитывает необходимости делать дедуктивный вывод из ложных гипотез. В науке, как и в ситуациях практического выбора, мы постоянно сталкиваемся с альтернативными гипотезами, все из которых не могут быть истинными. Следует ли объяснять феномен горения через выделение вещества, именуемого «флогистоном», или через соединение с веществом, именуемым «кислородом»? Действует ли магнетизм на расстоянии подобно гравитации или же ему, подобно звуку, требуется среда? Как правило, мы делаем выбор между двумя несовместимыми суждениями, выводя следствия из каждого из них и исключая как ложную ту гипотезу, которая приводит к ложным заключениям, т. е. к результатам, не превалирующим в области обозримых фактов. Если бы у ложных гипотез не было логических следствий, мы не смогли бы удостовериться в их ложности.
То, что суждение обладает определенными логическими следствиями, даже если оно ложно, следует также из того обстоятельства, что данные логические следствия, или импликации, являются частью его значения. А значение суждения нам необходимо знать прежде, чем мы сможем определить истинность суждения. Однако в любом случае (независимо от истинности или ложности суждения) установление существования логической импликации между двумя суждениями исключает возможность ложности второго суждения при истинности первого.
2. Существует широко распространенное мнение о том, что ложные посылки должны логически вести к ложным суждениям. Это серьезная ошибка, происходящая, вероятно, из неправильного понимания истинного принципа о том, что если следствия ложны, то посылки должны быть ложными. Однако в том, что истинные следствия могут имплицироваться, или логически следовать, из ложных посылок, можно легко убедиться на следующих примерах.