Литмир - Электронная Библиотека
Содержание  
A
A
Введение в логику и научный метод - i_015.png

поэтому докажем следующие теоремы.

Теорема I. Меньшая посылка должна быть утвердительной.

Допустим, что меньшая посылка – отрицательная. Тогда заключение должно быть отрицательным (аксиома 4), а Р должен быть распределенным. Поэтому Р должен быть распределен и в большей посылке (аксиома 2), а сама большая посылка должна быть отрицательной. Однако обе посылки не могут быть отрицательными (аксиома 3), и, следовательно, меньшая посылка должна быть утвердительной.

Теорема II. Бо′льшая посылка должна быть общим суждением.

Поскольку меньшая посылка должна быть утвердительной, ее предикат М не может быть распределенным. Поэтому М

должен быть распределен в большей посылке (аксиома 1), что, в свою очередь, делает бо′льшую посылку общим суждением.

С помощью специальной теоремы I мы можем исключить комбинации АЕ, АО, а с помощью второй теоремы – комбинации IA и ОА. В первой фигуре обоснованные заключения имеют место только в комбинациях АА, AI, ЕА и EI. Следовательно, шесть правильных модусов – это AAA, [AAI], АII, ЕАЕ, [ЕАО], ЕIO.

Модусы, обведенные нами в круг, называются подчиненными, или ослабленными, модусами, поскольку, несмотря на то что посылки в них предписывают выведение заключения, которое будет общим суждением, действительное заключение, тем не менее, является лишь частным суждением, и поэтому «более слабым», чем могло бы быть. Четырем из этих шести правильных модусов были даны специальные имена, в которых гласные соответствуют символам количества и качества посылок и заключения. Так, модус АЛА обозначается именем «Barbara», All – «Darii», ЕАЕ – «Celarent» и ЕIO – «Ferio». Данные имена были изобретены для формирования мнемонического средства, с помощью которого можно было бы вспомнить различные модусы в каждой из фигур, а модусы второй, третьей и четвертой фигур сводить к модусам первой фигуры. Ниже мы еще вернемся к проблеме сведения.

§ 7. Специальные теоремы и правильные модусы второй фигуры

Форма второй фигуры обозначается как

Введение в логику и научный метод - i_016.png

Докажем следующие теоремы.

Теорема I. Посылки должны различаться по качеству.

Если обе посылки являются утвердительными, то средний термин М является нераспределенным в каждой из них. Поэтому одна из посылок должна быть отрицательной (аксиома 1). Обе посылки не могут быть отрицательными (аксиома 3). Поэтому посылки должны различаться по качеству.

Теорема II. Бо′льшая посылка должна быть общим суждением.

Поскольку одна из посылок является отрицательным суждением, заключение также является отрицательным суждением (аксиома 4), и Р, больший термин, должен быть распределенным. Поэтому Р должен быть распределенным и в большей посылке (аксиома 2), а сама посылка должна быть общим суждением.

Теорема I исключает комбинации АА и AI, а теорема II исключает комбинации IA и ОА. В данной фигуре у нас остается четыре комбинации: АЕ, АО, ЕА и EI, из которых мы получаем шесть правильных модусов. АЕЕ (Camestres), [АЕО], АОО (Baroco), ЕАЕ (Cesare), [ЕАО] и ЕIO (Festino). Модусы, обведенные в круг, являются ослабленными силлогизмами.

§ 8. Специальные теоремы и правильные модусы ТРЕТЬЕЙ фигуры

Исходя из символьной формы третьей фигуры

Введение в логику и научный метод - i_017.png

мы можем доказать следующие теоремы.

Теорема I. Меньшая посылка должна быть утвердительной.

Предположим, что меньшая посылка – отрицательная. Тогда заключение будет отрицательным суждением (аксиома 4) и Р, его предикат, будет распределен. Поэтому Р будет распределен и в большей посылке (аксиома 2), и сама большая посылка будет отрицательной. Однако это невозможно (аксиома 3). Поэтому меньшая посылка не может быть отрицательной.

Теорема II. Заключение должно быть частным суждением.

Поскольку меньшая посылка должна быть утвердительным суждением, S в посылках не может быть распределенным.

Поэтому S не может быть распределенным и в заключении (аксиома 2), а само заключение должно быть частным суждением.

Первая теорема исключает комбинации АЕ и АО, и у нас остается шесть комбинаций: AA, AI, EA, EI, IA, OA. Помня о второй теореме, мы получаем шесть правильных модусов: [AAI] (Darapti), AII (Datisi), [ЕАО] (Felapton), ЕIO (Ferison), IAI (Disamis) и ОАО (Bocardo). В этой фигуре нет ослабленных модусов. Два модуса, обведенные в круг, называются усиленными силлогизмами, поскольку то же самое заключение может быть получено, даже если мы заменим суждение одной из посылок подчиненным ему суждением.

§ 9. Специальные теоремы и правильные модусы для четвертой фигуры

С помощью символьного выражения четвертой фигуры

Введение в логику и научный метод - i_018.png

мы можем доказать следующие теоремы.

Теорема I. Если большая посылка является утвердительным суждением, то меньшая посылка является общим суждением.

Если большая посылка является утвердительным суждением, то его предикат, М, нераспределен. Следовательно, М должен быть распределенным в меньшей посылке (аксиома 1), а сама меньшая посылка должна быть общим суждением.

Теорема II. Если одна из посылок является отрицательной, то большая посылка должна быть общим суждением.

Если одна из посылок – отрицательное суждение, то заключение является отрицательным (аксиома 4), а его предикат, Р, должен быть распределен. Поэтому Р должен быть распределен и в большей посылке (аксиома 2), а сама она, следовательно, должна быть общим суждением.

Теорема III. Если меньшая посылка является утвердительным суждением, то заключение является частным суждением.

Если меньшая посылка – утвердительное суждение, то его предикат, S, нераспределен. Поэтому S не может быть распределенным и в заключении (аксиома 2) и, следовательно, само заключение должно быть частным суждением.

Первая теорема исключает комбинации AI и AO, вторая – OA. У нас остаются пять комбинаций: AA, AE, EA, IA и EI. С помощью третьей теоремы мы получаем шесть правильных модусов: [AAI] (Bramantip), AEE (Camenes), [AEO] , IAI (Dimaris), [EAO] (Fesapo) и EIO (Fresison). AEO является ослабленным силлогизмом, тогда как ААI и EAO – усиленными.

Таким образом, мы обнаруживаем, что всего в четырех фигурах существует двадцать четыре правильные силлогистические формы. В каждой фигуре содержится по четыре правильных модуса. При этом ослабленные и усиленные формы правильны только при допущении экзистенциальной нагруженности, о которой мы четко заявили. Если подобного допущения не делается, то можно получить лишь пятнадцать правильных модусов.

§ 10. Сведение силлогизмов

Мы обнаружили правильные модусы посредством исключения всех форм, несовместимых с аксиомами обоснованности, а также с выведенными из них теоремами. Единственным обоснованием правильности выработанных нами форм стала их согласованность с аксиомами. Однако Аристотель, человек, первым написавший о силлогизмах, обосновывал правильные формы иначе. Согласно его подходу, модусы первой фигуры проверялись с помощью применения к ним принципа, известного с тех пор как dictum de omrti et nullo[30]. Данный принцип считался и зачастую до сих пор считается «самоочевидным». Формулировался он по-разному. Одной из таких формулировок была следующая: «Все, что предицируется, в утвердительном или отрицательном суждении, распределенному термину, может также предицироваться и всему, что в нем содержится» (Кейнс). Несложно показать, что принцип dictum эквивалентен аксиомам и теоремам, относящимся к первой фигуре. Однако он не может непосредственно применяться к силлогизмам в других формах. Соответственно первая фигура была названа совершенной, а остальные несовершенными.

вернуться

30

Сказанное обо всем и ни о чем (лат.). – Прим. перев.

32
{"b":"176549","o":1}