Спектр примесной фотопроводимости состоит из набора пиков, каждый из которых соответствует энергии фотонов, вызывающих переход в одно из возбуждённых состояний атомов примеси определенного сорта (см. рис. ). Высоты пиков в широких пределах изменения концентраций примесей не зависят от этих концентраций. Благодаря этому Ф. с. позволяет обнаруживать ничтожно малые количества примесей. Например, в образце Ge, спектр которого приведён на рисунке, суммарная концентрация примесных атомов составляет 10-11 % от общего числа атомов. Теоретический предел чувствительности Ф. с. ещё на несколько порядков ниже.
Лит.: Лифшиц Т. М., Лихтман Н. П., Сидоров В. И., Фотоэлектрическая спектроскопия примесей в полупроводниках, «Письма в редакцию ЖЭТФ», 1968, т. 7, в. 3, с. 111–14; Коган Ш. М., Седунов Б. И., Фототермическая ионизация примесного центра в кристалле, «Физика твердого тела», 1966, т. 8, в. 8, с. 2382–89; Быкова Е. М., Лифшиц Т. М., Сидоров В. И., Фотоэлектрическая спектроскопия, полный качественный анализ остаточных примесей в полупроводнике, «Физика и техника полупроводников», 1973, т. 7, № 5, с. 986–88; Kogan Sh. М., Lifshits, T. М., Photoelectric Spectroscopy – a new Method of Analysis of Impurities in Semiconductors, «Physica status solidi (a)», 1977, 39, № 1, p. 11.
Т. М. Лифшиц.
Фотоэлектрический спектр Ge с примесями B, Al, Ga.
Фотоэлектрические явления
Фотоэлектри'ческие явле'ния, электрические явления, происходящие в веществах под действием электромагнитного излучения. Поглощение электромагнитной энергии в веществе происходит всегда отдельными порциями – квантами (фотонами ), равными
(
–
Планка постоянная , w
– частота излучения). Ф. я. возникают, когда энергия поглощённого фотона затрачивается на квантовый переход электрона в состояние с большей энергией. В зависимости от соотношения между энергией фотонов и характерными энергиями вещества (энергией возбуждения атомов и молекул, энергией их ионизации, работой выхода электронов из твёрдого тела и т.п.) поглощение электромагнитного излучения может вызывать разные Ф. я. Если энергии фотона хватает лишь для возбуждения атома, то может возникнуть изменение
диэлектрической проницаемости вещества (
фотодиэлектрический эффект )
. Если энергия фотона достаточна для образования неравновесных носителей заряда в твёрдом теле – электронов проводимости и дырок, то изменяется электропроводность тела (см.
Фотопроводимость )
. В неоднородных телах, например в
полупроводниках с неоднородным распределением примесей, в частности в области
электронно-дырочного перехода , вблизи контакта двух разнородных полупроводников (см.
Полупроводниковый гетеропереход )
, контакта полупроводник – металл, или при неоднородном облучении, а также в полупроводниках, помещенных в магнитное поле, возникает электродвижущая сила (см.
Фотоэдс , Кикоина – Носкова эффект )
. Фотопроводимость и фотоэдс могут возникать также при поглощении фотонов электронами проводимости, в результате чего увеличивается их подвижность (см.
Подвижность носителей тока )
. Если
достаточно велика для ионизации атомов и молекул газа, то происходит фотоионизация. Когда эта энергия поглощается электронами жидкости или твёрдого тела, если последние могут достичь поверхности тела и, преодолев существующий на ней
потенциальный барьер , выйти в вакуум или др. среду, то возникает
фотоэлектронная эмиссия . Фотоэлектронную эмиссию часто называют внешним
фотоэффектом . В отличие от него, все Ф. я., обусловленные переходами электронов из связанных состояний в квазисвободные внутри твёрдого тела, объединяются термином
фотоэффект внутренний .
Следует отличать Ф. я. от электрических явлений, возникающих при нагревании тел электромагнитным излучением. Все Ф. я. обусловлены нарушением равновесия между системой электронов, с одной стороны, и атомом, молекулой или кристаллической решёткой – с другой. Неравновесное состояние электронной системы тела сохраняется некоторое время после поглощения фотона, в течение которого и могут наблюдаться Ф. я. Затем избыточная энергия электронов рассеивается (например, передаётся кристаллической решётке) и в теле устанавливается равновесие, соответствующее более высокой температуре. Ф. я. исчезают, но из-за нагревания тела в нём могут возникнуть явления, по внешним признакам аналогичные Ф. я.: болометрический эффект (изменение электропроводности), пироэлектрический эффект (см. Пироэлектрики ), термоэлектронная эмиссия , термоэдс и др. термоэлектрические явления .
В полупроводниках и диэлектриках электронов проводимости мало, поэтому уже небольшого числа фотонов достаточно для заметного увеличения количества электронов или их энергии. Теплоёмкость же кристаллической решётки тел очень велика по сравнению с теплоёмкостью «газа» электронов проводимости. Вследствие этого в телах не очень малых размеров Ф. я. возникают при поглощении в них гораздо меньшей энергии электромагнитного излучения, чем та, которая необходима для наблюдения термоэлектрических явлений. Инерционность Ф. я. во много раз меньше инерционности термоэлектрических явлений и (в отличие от последних) не зависит от размеров тел и качества теплового контакта их с др. телами.
В металлах из-за очень высокой электропроводности внутренний фотоэффект не наблюдается и возникает только фотоэлектронная эмиссия.
Лит.: Рыбкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Фотоэлектронные приборы, М., 1965; Панков Ж., Оптические процессы в полупроводниках, пер. с англ., М., 1973; Соммер А., Фотоэмиссионные материалы, пер. с англ., М., 1973.
Т. М. Лифшиц.
Фотоэлектрический генератор
Фотоэлектри'ческий генера'тор, устройство, непосредственно преобразующее энергию оптического излучения в электрическую на основе явления фотоэффекта внутреннего в полупроводниках. Преобразуемой энергией является энергия солнечной радиации (см. Солнечная батарея ), инфракрасного излучения нагретых тел либо лазерного излучения (в любом диапазоне волн).
Обычно Ф. г. конструктивно выполняют в виде плоской панели, собранной из отдельных фотоэлементов , причём толщина полупроводника не превышает 0,2–0,3 мм. Кпд серийно выпускаемых Ф. г. 10–12%, у лучших образцов он достигает 15–18%. Ф. г. способны преобразовывать энергию излучения сверхвысокой плотности до нескольких квт/см2 . Отдельные элементы Ф. г. могут быть соединены между собой как последовательно, так и параллельно; при этом от генератора можно получать соответственно малые токи при большом напряжении (до нескольких кв ) или большие токи (до нескольких сотен а ) при малом напряжении.
Достоинства Ф. г. – портативность, практически неограниченный срок службы и хранения, отсутствие движущихся частей, простота обслуживания, отсутствие вредных для окружающей среды выделений; их недостаток – относительно высокая стоимость. Ф. г. используют в качестве автономных источников энергопитания аппаратуры космических летательных аппаратов, радиоприёмников и приёмно-передающих радиостанций, маяков и навигационных указателей, устройств антикоррозионной защиты нефте- и газопроводов и т.п. Разработаны проекты создания солнечных электростанций большой мощности на основе Ф. г., снабженных концентраторами солнечного излучения.