Литмир - Электронная Библиотека
Содержание  
A
A

  В Р. г. с фоторегистрацией для исследования монокристаллов или текстур щелевым экраном выделяют дифракционный конус, соответствующий исследуемой кристаллографической плоскости. Фотоплёнка и образец движутся синхронно, поэтому одна из координат на плёнке соответствует азимутальному углу дифрагированного луча, вторая — углу поворота образца [так работает Р. г. Вайсенберга (рис. 1), текстурный Р. г. Жданова].

  В Р. г. для дифрактометров может быть использована аналогичная схема, однако угол поворота образца и углы поворота и наклона детектора в этом случае отсчитываются непосредственно по лимбам или датчикам, установленным на соответствующих валах. В рентгеновских дифрактометрах для исследования монокристаллов и текстур применяется так называемая экваториальная геометрия: счётчик перемещается только в одной плоскости, а образец нужно поворачивать вокруг трёх взаимно перпендикулярных осей таким образом, чтобы дифрагированный пучок попал в плоскость движения счётчика. Положения образца (углы l, j, w его поворота вокруг осей вращения) и счётчика (угол 2q) в момент дифракции отсчитываются по лимбам (рис. 2).

  Для исследования поликристаллических образцов используют слегка расходящийся пучок рентгеновских лучей, который после дифракции на объекте сходится в одну точку. В этом случае применяются схемы съёмки по Брэггу — Брентано, когда плоскость образца делит угол рассеяния пополам (рис. 3), и Зееману — Болину, когда фокус рентгеновской трубки, образец и щель детектора располагаются на одной окружности (рис. 4).

  В Р. г. входят также системы, формирующие первичный пучок (коллиматоры, монохроматоры), и системы движения для измерения интегральной интенсивности.

  Лит.: Уманский М. М., Аппаратура рентгеноструктурных исследований, М., 1960; Хейкер Д. М., Зевин Л. С., Рентгеновская дифрактометрия, М., 1963; Хейкер Д. М., Рентгеновская дифрактометрия монокристаллов, Л., 1973.

  Д. М. Хейкер.

Большая Советская Энциклопедия (РЕ) - i009-001-206412968.jpg

Рис. 1. Схема рентгеновского гониометра типа Вайсенберга.Зубчатые передачи и ходовый винт обеспечивают синхронное движение исследуемого образца (О) и цилиндрической кассеты (К) с рентгеновской плёнкой.

Большая Советская Энциклопедия (РЕ) - i009-001-222672449.jpg

Рис. 3. Схема фокусировки лучей в рентгеновском гониометре по Брэггу — Брентано для исследования поликристаллических образцов; F — фокус рентгеновской трубки; O — плоский образец; D — щель счетчика; C — счетчик; 2q — угол отражения.

Большая Советская Энциклопедия (РЕ) - i009-001-228568655.jpg

Рис. 2. Схема экваториального четырёхкружного гониометра для исследования монокристаллов. Лимб 1 измеряет Ф2 — угол поворота кристалла вокруг оси гониометрической головки; лимб 2 регистрирует c— угол наклона оси Ф; лимб 3 изменяет w — угол вращения кристалла относительно главной оси гониометра; лимб 4 измеряет угол поворота счётчика 2q.

Большая Советская Энциклопедия (РЕ) - i009-001-238746731.jpg

Рис. 4. Схема фокусировки лучей в рентгеновском гониометре по Зееману—Болину; F — фокус рентгеновской трубки; O — изогнутый образец; D — щели счетчиокв; C — счетчики.

Рентгеновский дифрактометр

Рентге'новский дифракто'метр, прибор для измерения интенсивности и направления рентгеновского излучения, дифрагированного на кристаллическом объекте. Р. д. применяется для решения различных задач рентгеновского структурного анализа. Он позволяет измерять интенсивности дифрагированного в заданном направлении излучения с точностью до 10-х долей процента и углы дифракции с точностью до 10-х долей минуты. С помощью Р. д. можно производить фазовый анализ поликристаллических объектов и исследование текстур, ориентировку монокристальных блоков, получать полный набор интенсивностей отражений от монокристалла, исследовать структуру многих веществ при различных внешних условиях и т.д.

  Р. д. состоит из источника рентгеновского излучения, рентгеновского гониометра, в который помещают исследуемый образец, детектора излучения и электронного измерительно-регистрирующего устройства. Детектором в Р. д. служит не фотоплёнка, как в рентгеновской камере, а счётчики квантов (сцинтилляционные, пропорциональные, полупроводниковые счётчики или Гейгера — Мюллера счётчики). Дифракционную картину образца в Р. д. получают последовательно: счётчик перемещается в процессе измерения и регистрирует попавшую в него энергию излучения за определённый интервал времени. По сравнению с рентгеновскими камерами Р. д. обладают более высокой точностью, чувствительностью, большей экспрессностью. Процесс получения информации в Р. д. может быть полностью автоматизирован, поскольку в нём отсутствует необходимость проявления фотоплёнки, причём в автоматическом Р. д. прибором управляют ЭВМ, полученные данные поступают на обработку в ЭВМ. Универсальные Р. д. можно использовать для различных рентгеноструктурных исследований, заменяя приставки к гониометрическому устройству. В больших лабораториях применяются специализированные дифрактометры, предназначенные для решения какой-либо одной задачи рентгеноструктурного анализа.

  Лит.: Хейкер Д. М., Зевин Л. С., Рентгеновская дифрактометрия, М., 1963; Хейкер Д. М., Рентгеновская дифрактометрия монокристаллов, Л., 1973.

  Д. М. Хейкер.

Рентгеновский структурный анализ

Рентге'новский структу'рный ана'лиз, методы исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Р. с. а. наряду с нейтронографией и электронографией является дифракционным структурным методом; в его основе лежит взаимодействие рентгеновского излучения с электронами вещества, в результате которого возникает дифракция рентгеновских лучей. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1

Большая Советская Энциклопедия (РЕ) - i-images-148732869.png
, т. е. порядка размеров атомов. Методами Р. с. а. изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Наиболее успешно Р. с. а. применяют для установления атомной структуры кристаллических тел. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданную самой природой дифракционную решётку для рентгеновских лучей.

  Историческая справка. Дифракция рентгеновских лучей на кристаллах была открыта в 1912 немецкими физиками М. Лауэ, В. Фридрихом и П. Книппингом. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещенной за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно — след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом, носит название лауэграммы (рис. 1).

  Разработанная Лауэ теория дифракции рентгеновских лучей на кристаллах позволила связать длину волны l излучения, параметры элементарной ячейки кристалла а, b, с (см. Кристаллическая решётка), углы падающего (a, b, g) и дифракционного (a, b, g) лучей соотношениями:

 a (cosa— cosa) = hl,

                     b (cosb — cosb) = kl,                (1)

c (cosg — cosg) =ll,

159
{"b":"106244","o":1}