Благодаря успехам биохимии М. и особенно развитию генетики микроорганизмов и молекулярной генетики было выяснено, что многие процессы биосинтеза и энергетического обмена (транспорт электронов, цикл трикарбоновых кислот, синтез нуклеиновых кислот, белка и др.) протекают у М. также, как в клетках высших растений и животных. Т. о., в основе роста, развития, размножения как высших, так и низших форм жизни лежат единые процессы. Наряду с этим М. присущи специфические ферментные системы и биохимические реакции, не наблюдаемые у др. существ. На этом основана способность М. разлагать целлюлозу, лигнин, хитин, углеводороды нефти, кератин, воск и др. Необычайно разнообразны у М. пути получения энергии. Хемоавтотрофы получают её за счёт окисления неорганических веществ, фотоавтотрофные бактерии используют энергию света в той части спектра, которая недоступна высшим растениям, и т.д. Некоторые М. способны усваивать молекулярный азот (см.Азотфиксирующие микроорганизмы ), синтезировать белок за счёт самых различных источников углерода, вырабатывать множество биологически активных веществ (антибиотики, ферменты, витамины, стимуляторы роста, токсины и др.). Применение М. в с.-х. практике и промышленности основано на этих специфических особенностях их обмена веществ. См. также ст. Брожение , Микробиологический синтез и литературу при них.
А. А. Имшенецкий.
Микропиле
Микропи'ле (от микро... и греч. pýle — ворота, отверстие), 1) одно или несколько отверстий в оболочке яиц насекомых, паукообразных, некоторых моллюсков, рыб и ряда др. животных, через которые сперматозоид проникает в яйцо. См. также Оплодотворение . 2) Пыльцевход, семявход, отверстие на вершине семяпочки у высших семенных растений, через которое в неё при опылении проникает пыльцевая трубка. М. образуется вследствие того, что остаются несомкнутыми покровы, окружающие семяпочку.
Микропористые резины
Микропо'ристые рези'ны, пористые материалы с размером пор ~ 0,4 мкм, получаемые из твёрдых каучуков и латексов; см. также Пористые резины .
Микропривод
Микроприво'д,электропривод с исполнительным электродвигателем мощностью примерно до 500 вт. Применяется в устройствах автоматики, кино- и радиоаппаратуре, бытовых электроприборах и др. Различают М. постоянного и переменного тока. В качестве регуляторов в М. постоянного тока служат магнитные и транзисторные усилители, в реверсивных М. — двухтактные магнитные усилители с внутренней обратной связью.
В М. переменного тока для управления исполнительными электродвигателями применяют магнитные и магнитно-полупроводниковые усилители, а также преобразователи частоты на транзисторах и тиристорах. При этом частота вращения электродвигателей регулируется изменением амплитуды и частоты напряжения на статорной обмотке. Необходимая жёсткость механических характеристик электродвигателей достигается введением обратной связи по частоте вращения.
Лит.: Авен О. И., Доманицкий С. М., Бесконтактные исполнительные устройства промышленной автоматики, М. — Л., 1960.
Микропричинности условие
Микропричи'нности усло'вие, требование, согласно которому условие причинности (причина должна предшествовать во времени следствию) выполняется вплоть до сколь угодно малых расстояний и промежутков времени. Обычно М. у. относят к расстояниям £ 10-14см и временам £ 10-24сек.
В относительности теории показывается, что допущение о существовании физических сигналов, распространяющихся со сверхсветовой скоростью, приводит к нарушению требования причинности. Таким образом, М. у. означает запрет на сверхсветовые сигналы «в малом». В квантовой теории, где физическим величинам ставятся в соответствие операторы , М. у. выступает как требование переставимости любых операторов, относящихся к двум точкам пространства-времени, если эти точки нельзя связать световым сигналом; такая переставимость означает, что физические величины, которым соответствуют эти операторы, могут быть точно определены независимо и одновременно. М. у. существенно в квантовой теории поля , особенно в дисперсионном и аксиоматическом подходах, которые не опираются на конкретные модельные представления о взаимодействии и поэтому могут быть использованы для прямой проверки М. у. В наиболее разработанной части квантовой теории поля — квантовой электродинамике М. у. экспериментально проверено до расстояний ³ 10-15см (и соответственно, времён ³ 10-25 сек ).
Нарушение М. у. привело бы к необходимости радикального изменения способа описания физических процессов, отказа от принятого в современных теориях динамического описания, при котором состояние физической системы в данный момент времени (следствие) определяется её состояниями в предшествующие моменты времени (причина).
Лит. см. при ст. Квантовая теория поля , Причинности принцип .
В. И. Григорьев.
Микропрограмма
Микропрогра'мма, связная совокупность микрокоманд в цифровых вычислительных машинах. Каждая микрокоманда указывает выполняемые микрооперации или микроприказы, адрес следующей микрокоманды, продолжительность самой микрокоманды и особые действия, относящиеся к операциям контроля. Одна М. может вызывать другую в качестве микроподпрограммы. Меняя последовательность и состав микрокоманд, т. е. изменяя структуру М., можно изменять систему команд ЦВМ, приспосабливая её к определённому классу задач или обеспечивая программную совместимость с др. ЦВМ. М. обычно хранятся в специализированной памяти, более быстродействующей, чем оперативная память. Длина М. обычно составляет от 10 до 100 микрокоманд, а микрокоманда занимает от 16 до 100 и более двоичных разрядов. Объём М. в малых ЦВМ составляет 256—1024 16-разрядных слова, в средних и больших ЦВМ от 1024 до 819650 — 100-разрядных слов.
Лит.: Булей Г., Микропрограммирование, пер. с франц., под ред. М. Л. Пебарта, М., 1973.
А. В. Гусев.
Микропрограммное управление
Микропрогра'ммное управле'ние, вид иерархического управления работой цифровых вычислительных машин, при котором каждая команда является обращением к последовательности т. н. микрокоманд, обычно более низкого уровня, чем сама команда. Набор микрокоманд называется микропрограммой и обычно хранится в постоянной памяти ЦВМ, составляющей неотъемлемую часть устройства управления. Записанные в памяти микрокоманды определяют работу всех устройств машины, выбирая в каждом такте нужные совокупности элементарных машинных операций, а последовательность микрокоманд обеспечивает выполнение заданной команды. Микрокоманда может содержать три части: оперативную, в которой указываются управляющие входы всех исполнительных устройств машины; адресную, определяющую адрес следующей микрокоманды с учётом условий логических переходов (передач управления); временную, определяющую время выполнения микрокоманды. При этом код конкретной операции программы совпадает с адресом первой микрокоманды соответствующей микропрограммы.
Достоинства М. у. состоят в том, что оно обеспечивает операционную гибкость ЦВМ и возможность изменения системы команд и состава машинных операций в зависимости от особенностей решаемых задач и условий применения машины; позволяет сравнительно престо реализовать различные сложные операции при значительной экономии машинного времени; даёт возможность строить диагностические микротесты для определения с большой точностью места неисправности в машине. Основной недостаток, обусловливающий ограниченное распространение М. у., — необходимость применения быстродействующих запоминающих устройств небольшого объёма (несколько тыс. слов) с временем обращения, соизмеримым с временем выполнения элементарных операций в исполнительных устройствах. В вычислительных машинах 3-го поколения широко используется также метод управления, при котором микропрограмма реализуется с помощью системы устройств, а не в виде команд, записанных в памяти ЭВМ; высокое быстродействие, большие объёмы оперативной памяти и богатое математическое обеспечение этих машин позволяют сделать управление более эффективным, чем при М. у. в ЦВМ 2-го поколения.