Литмир - Электронная Библиотека
Содержание  
A
A
«Наука и Техника» [журнал для перспективной молодежи], 2007 № 11 (18) - _05.jpg

Предложенную гипотезу сравнительно несложно проверить. Для этого нужно, во-первых, измерить электромагнитные поля при соприкосновении аппаратуры с «хоботом» и другими частями торнадо. Во-вторых, сфотографировать торнадо в рентгеновском, ультрафиолетовом и инфракрасном диапазонах, причем как можно ближе к объекту — чтобы избежать искажений от воздуха и поднятой грязи. Это позволит доказать существование узла вращения, выявить детали его строения и особенности движения кольцевых образований. В-третьих, провести локацию зарядов, из которых формируются торнадо.

Из гипотезы следуют очень важные и полезные выводы. Прежде всего в случае подтверждения электромагнитной сущности торнадо возникает хороший способ борьбы с этим разрушительным явлением природы: для уничтожения такого торнадо достаточно перебить его «хобот» либо с помощью длинных проводников разрядить питающую его зону заряда в облаке. Кроме того, если в природе существуют каналы передачи огромных токов, которые живут десятки минут и тянутся на километры, то, значит, нет никаких фундаментальных ограничений на создание руками человека аналогичных каналов длиной в сотни и тысячи километров. По таким каналам удастся чрезвычайно эффективно транспортировать электроэнергию, причем на них не будут распространяться те ограничения, которые свойственны металлическим проводам.

От редакции: нам представляется, что данная гипотеза имеет право на экспериментальную проверку — ведь разрушали же в средние века «хобот» морских смерчей залпами из корабельных пушек. Вопрос в другом — кто рискнет «потянуть» смерч за «хобот»?

• АСТРОНОМИЯ, АСТРОФИЗИКА И КОСМОНАВТИКА

Театр под названием Вселенная

Игорь Сокальский, кандидат физико-математических наук

Часть I: Арена

Каждое утро мы просыпаемся и поднимаемся с постели. Мозг переходит из режима сна в режим бодрствования и рассылает по нервным каналам сигналы, обеспечивающие перевод организма в «дневное» состояние. Пищеварительная система перерабатывает завтрак, извлекая из него энергию, необходимую телу. В почтовом ящике мы находим письмо, которого давно ждали. Сердце начинает биться сильнее, в кровь выбрасывается адреналин. Мы выходим из дома и движемся в направлении работы. В метро становится душно — дыхание учащается, потому что легкие должны переработать больше воздуха, чтобы снабдить организм необходимым ему количеством кислорода…

Мы живем, и каждое мгновение нашей жизни, каждый шаг, каждый вздох, каждая радость или огорчение — непрерывные трансформации материи, происходящие в некоторой области пространства в течение некоторого интервала времени. И человеческая жизнь, и жизнь элементарных частиц, и жизнь звезд — все это изменение состояния материи в пространстве и времени. Не будь материи — всему, что есть в этом мире, не из чего было бы состоять. Не будь пространства — материи не в чем было бы перемещаться. Не будь времени — материи не в чем было бы изменяться. Материя, время и пространство — ключевые, базисные сущности. Без них не могло бы быть нашего мира.

Пространство и время образуют ту сцену, на которой материя видоизменяется и взаимодействует с другими видами материи. Материя движется в пространстве и времени. И по сути дела, больше ничего не происходит, только этот спектакль. Но сюжет его невообразимо сложен. Он охватывает миллиарды лет и развивается на пространстве в миллиарды миллиардов километров. Однако в этом спектакле далеко не второстепенными могут оказаться и сюжетные линии, которые длятся миллиардные доли секунды и разыгрываются на масштабах миллиардных долей сантиметра. И для каждого такого сюжета есть свое место в общем сценарии.

Как и когда начался этот спектакль? Каким будет его финал и когда он наступит? Кто действующие лица? В каких отношениях они находились, находятся и будут находиться? Об этом написаны сотни тысяч статей и книг, однако полной ясности нет и по сей день. Я хотел бы еще раз прикоснуться к этой теме и рассказать о том, что известно о ней сейчас, в начале XXI века. Мой рассказ ни в коей мере не претендует на полное и всеобъемлющее изложение. Это именно прикосновение. Не больше, но и не меньше. Приподнимем занавес и рассмотрим сцену.

Сцена: пространственный аспект

В школьных учебниках, в научных статьях и книгах, в железнодорожных расписаниях и рекламных буклетах — всюду встречается множество чисел, обозначающих размеры и расстояния. Каждый из читателей хранит некоторые из этих чисел в памяти. Диаметр Земли — 13 тыс. км, размер атома водорода — 10-8 см, расстояние до Солнца — 150 млн. км, а до ближайшей к нам галактики М31 (она же туманность Андромеды) — 2 млн. световых лет. Расстояния, которые вы не помните, легко найти в соответствующем справочнике. Тысячи (если не миллионы) расстояний и размеров известны человечеству. Но как их почувствовать? Правильно ли обычный человек осознает масштабы микромира и всей Вселенной, а также их соотношения?

Скорее нет, чем да. Человеческие способности восприятия созданы очень рационально, и лишних нам не дано. Естественный отбор обеспечил сохранение и закрепление тех свойств организма, которые были важны для выживания. Расстояния от нескольких миллиметров до нескольких десятков или сотен метров могут быть не только известны человеку, но и почувствованы им. Чтобы попасть футбольным мячом в ворота, расположенные в паре десятков метров от нас, не нужно знать законов механики и единиц измерения. Где-то в недрах мозга заложена врожденная способность правильно оценить и расстояние (даже не выражая его в числах), и необходимую силу удара. Но все, что не укладывается в узкую шкалу от 10-3 м до 103 м (6 порядков величины), непредставимо для любой, даже самой образованной человеческой особи. Между тем реальная шкала расстояний, на которых разыгрывается вселенский спектакль, простирается как минимум на 40 порядков — отношение размеров Вселенной к размерам атомного ядра выражается 41-значным числом.

На такой шкале разница между размерами большого города и типографской точкой в тексте, который вы сейчас читаете, выглядит незначительной. Попытаемся все же представить себе всю шкалу расстояний, сравнивая одни размеры с другими и взяв за основу примерный средний рост человеческого существа: 1,7 м.

Для начала пройдемся «вниз» по лестнице масштабов. Чтобы мы могли хорошо разглядеть какой-либо предмет, его размеры должны быть порядка сантиметра. Если пропорционально увеличить все существующие размеры так, чтобы размеры атомов и состоящих из них молекул лежали в сантиметровом диапазоне (истинные размеры атомов составляют около 10-9 м, одну миллиардную от размеров человека), то человеческий рост был бы равен примерно 200 тыс. км, то есть половине расстояния от Земли до Луны! В этом масштабе размер типичных шаровидных бактерий (одноклеточных организмов, видимых в неувеличенном виде только под сильным микроскопом) составлял бы 100–200 м. Такой мысленный эксперимент дает наглядное представление о разнице в размерах всего в миллиард раз (9 порядков величины). Даже если бы атомы увеличились до размеров едва заметных точек, которые можно изобразить очень острым карандашом на листе бумаги, человеческий рост был бы равен расстоянию от Москвы до Парижа. Но это только первая ступенька вниз.

Сделаем еще один шаг вниз и рассмотрим атомные ядра. Роль молекул и атомов — формировать химические свойства веществ. Последние зависят от числа электронов, которое определяется электрическим зарядом атомного ядра. Помимо этого, ядра, состоящие из протонов и нейтронов, играют и другую важную роль — они участвуют в термоядерных реакциях, происходящих в центральных областях звезд. Если размер атомного электронного облака 10-9 м, то ядро на четыре-пять порядков меньше: 10(-13-14) м. Если размер ядра увеличить до одного сантиметра, то размер атома будет составлять несколько сот метров. Другими словами, крохотное ядро почти незаметно в существенно превышающем его по размерам атоме— это впервые заметил 94 года назад Эрнест Резерфорд в своих знаменитых опытах по облучению золотой фольги пучком альфа-частиц. В этом масштабе человеческий рост возрастет до размеров земной орбиты — 150 млн. км. Если мы внимательно рассмотрим протоны и нейтроны (еще одна ступенька), из которых состоит сантиметрового размера атомное ядро, то заметим, что это сложное образование; оно состоит из еще меньших объектов — кварков и склеивающих их глюонов.

4
{"b":"951859","o":1}