Кроме того, в толще пленки авторы купола предусмотрели прямоугольную сетку тончайших (тоже в один микрометр) проводков, идущих с шагом в один сантиметр. Они должны сигнализировать о повреждении пленки.
Авторы концепции отмечают, что многие люди увлечены сейчас перспективами колонизации Марса, но немногие задумываются о более эффективном освоении едва ли не четверти земной поверхности — полярных областей. Между тем, тут есть чем заняться.
Одни биологические исследования чего стоят. Понимание биохимии уникальных организмов, обитающих, скажем, в полярных морях, может привести к созданию новых лекарств. Почему бы и нет?
Да и в плане подготовки к марсианским миссиям полюса Земли очень интересны. Здесь примерно столько же солнечного тепла (с учетом отлогого угла падения лучей), как в экваториальных широтах Красной планеты, и здесь также желательна максимальная автономия колонии. Ведь завоз продуктов — очень дорог.
А раз нам нужны собственные продукты, значит — теплицы. EPZD, укрывающий одним махом и посадки растений, и домики обитателей — то, что доктор прописал.
Такой купол на несколько человек весил бы всего 65 килограммов (что и для марсианской миссии хорошо, и для полярной экспедиции). А купол, закрывающий площадь порядка четырех гектаров — потянет всего на 145 тонн. Купол из стекла и металла аналогичного размера весил бы тысячи тонн, бетонный — сотни тысяч.
Разумеется, ультратонкие (порядка микрометра и меньше) полимерные пленки, обладающие достаточной для такого сооружения прочностью, это сами по себе — продукты высоких технологий. Их создание и массовое производство — задача на ближайшие годы. И все же в замысле Болонки на и Кэткарта нет ничего фантастического. Разве только предположение о грядущем лунном и марсианском применении таких куполов.
Конечно, можно предположить, что EPZD будут в таком случае применяться для создания эффекта теплицы и обогрева поселения, но не для удержания пригодной для дыхания атмосферы. Ведь давление снаружи будет нулевым или почти нулевым. Значит — все равно понадобятся герметичные домики.
А ведь вы не хотели бы оказаться в пространстве, окруженном вакуумом или чрезвычайно разреженной атмосферой Марса, будучи защищенными лишь пленкой, подозрительно напоминающей мыльный пузырь?
“Купол тысячелетия” (Millennium Dortte) в Гринвиче — одно из самых красивых и современных (по конструкции) сооружений такого рода. Но даже он весит слишком много, если его использовать для колонизации Марса. Тут нужно придумать что-то более воздушное.
Схема EPZD. а) Вид купола в разрезе. Стрелками показаны солнечные лучи: 1 — прозрачная двухслойная пленка, 2 — отражающее покрытие, 3 — жалюзи, 4 — свет, 5 — вход, 6 — воздушный насос, Ь) Вид купола сверху
Стеклянный купол (на стальном каркасе) в Антарктике. Это, пожалуй, самое известное здание американской исследовательской базы Амундсена-Скотта, расположенной на Южном полюсе. Диаметр купола составляет 50 метров, высота — 16 метров
• МЕТЕОРОЛОГИЯ
Кто возьмет смерч за хобот?
Медведев В. Б.
Древняя молния
Может показаться, что о молнии мы знаем все. Виднейшие ученые, например, Ю. Райзер и Э. Базелян в России, В. Раков и М.А. Юман в США, и многие другие построили десятки моделей, которые должны дать детальное описание явления на уровне современного знания. Однако основа лежащих в этих моделях научных представлений появилась четыре века назад, когда были сделаны электрофорные машины. В них заряд создается в результате трения друг о друга вращающихся дисков, и по мере его накопления в конденсаторах— лейденских банках — между электродами с сильным треском пробивает искра, точь-в-точь похожая на молнию. Тогда-то, за 150–200 лет до Максвелла и Фарадея, Гальвани и Вольта, возникла мысль, что атмосферное электричество появляется как и в электрофорной машине в результате трения друг о друга составляющих облака частиц. И заряд равномерно распределяется по облаку. На самом деле что именно происходит на небе, как образуются заряды электричества и как они распределяются, достоверно неизвестно и доныне. Это обстоятельство, впрочем, не мешает кочевать из монографии в монографию древних умозрительных представлений, выдаваемых за истину. В то же время экспериментальные попытки зарядить искусственно созданные в лабораториях облака до нужного заряда успехом не увенчались.
![«Наука и Техника» [журнал для перспективной молодежи], 2007 № 11 (18) - _03.jpg](/BookBinary/951859/1759050846/_03.jpg/0)
Ученые из центра изучения молний, который располагается во Флориде спровоцировали выстрелом ракеты в сильный шторм молнию, которая позволила зарегистрировать достаточно сильное радиационное излучение
Молния, как плазменный канал
Первые эксперименты для доказательства идентичности лабораторной искры и молнии поставил Б. Франклин в середине XVIII века. В России подобные исследования стоили жизни Г. Рихману, сподвижнику М.В. Ломоносова. Появление фотоаппаратуры позволило Б. Шотланду в 30-е годы прошлого века, а затем и другим исследователям, в том числе И.С. Стекольникову в СССР, измерить скорость распространения молнии в атмосфере. Оказалось, что она варьируется в пределах 100—2000 км/с при движении от облака к земле и достигает 3000 км/с при молниях между облаками на длинных, 10—100 км, промежутках. Получается, что горячий канал молнии пробивает атмосферу со скоростью в десять тысяч раз больше скорости звука!
Естественно возникает вопрос: а не сопровождается ли это какими-либо аэродинамическими явлениями? Ведь когда сверхзвуковой самолет разгоняется выше скорости звука, возникает ударная волна, грохочет гром, а вокруг носа самолета образуется конус обтекания. Пусть в случае с молнией ударная волна прижата к телу разряда и ее не видно, но что происходит на его кончике, пробивающем атмосферу со скоростью, многократно превышающей скорость звука?
Оказывается, специалисты об этом не задумываются. За время, прошедшее с опытов Франклина, молниезащита стала мощной отраслью техники, однако ученые, которые разрабатывают соответствующие устройства, озабочены способами защиты, а не деталями аэродинамики процесса. Те, кто занимается аэродинамикой (в России это ЦАГИ, МАИ, ИВТАН и МГТУ им. Н.Э. Баумана), не предполагают существования столь быстрого движения в атмосфере. Ведь максимальная скорость, с которой они имели дело, — это 12 км/с, — возвращение космического аппарата с орбиты Луна-Земля. Остальное меньше: 8 км/с — спутник Земли, чуть меньше скорость боеголовки стратегической ракеты, километры в секунду— тактические ракеты и, наконец, самолеты вроде Миг-25 — максимум 3,5 скорости звука. Поэтому, когда общаешься со специалистами по сверхзвуку и говоришь, что существует объективно фиксируемый сверхскоростной процесс движения в атмосфере горячего канала с поперечным сечением в сантиметры и десятки сантиметров, то ничего, кроме недоверия и удивления, это не вызывает. Однако наличие таких процессов — это научно установленный факт.
В экспериментах с ракетами и проволоками, которые они тянут к облаку для получения искусственных молний, было замечено, что сечение канала молнии составляет от нескольких сантиметров до дециметров. На видеозаписях тех же экспериментов зафиксирована стадия угасания молнии, когда по ее длине появляются темные прозрачные зоны — страты. Аналогичный процесс можно наблюдать в лампе дневного света: при пониженном напряжении возникает череда темных и светлых зон. Стратификация канала либо сразу, либо по мере угасания молнии воспринимается наблюдателем, инерционной фотопленкой и видеокамерой как черточная молния.