Литмир - Электронная Библиотека
Содержание  
A
A

В 2019 г. американский артист Джим Мескимен опубликовал видео, в котором он читает своё стихотворение «Пожалейте бедного импрессиониста» (Pity the Poor Impressionist), попеременно принимая обличие 20 различных знаменитостей — от Джорджа Клуни и Роберта Де Ниро до Арнольда Шварценеггера и Джорджа Буша — младшего[2903].

Технологии дипфейков открывают новые перспективы в кинематографе и рекламе. В приключенческом фильме 2016 г. «Изгой-один. Звёздные войны: Истории» (Rogue One: A Star Wars Story) на экране вновь появились молодая принцесса Лея и гранд-мофф Таркин. Исполнительнице роли Леи, Кэрри Фишер, на момент съёмок фильма было почти 60, а Питер Кушинг, сыгравший Таркина, умер более чем за 20 лет до начала съёмок. Для воссоздания образов артистов при помощи «классических» технологий CGI (Computer-Generated Imaginery, Сгенерированные компьютером изображения), таких как 3D-сканирование и скульптурное моделирование, создателям потребовались специальное оборудование и трудоёмкий процесс, для выполнения которого была привлечена большая команда специалистов[2904], [2905], [2906], [2907]. Два года спустя создатель YouTube-канала derpfakes, молодой специалист по машинному обучению из Великобритании, продемонстрировал на своём канале фрагменты фильма «Хан Соло. Звёздные войны: Истории» (Solo: A Star Wars Story), в которых на место Олдена Эренрайка, сыгравшего в этом фильме главного героя, было вмонтировано лицо молодого Харрисона Форда. И хотя результат не был на 100% идеальным, он смотрелся, пожалуй, не хуже, чем творение профессиональных «клоноделов»[2908]. Появление цифровых двойников в кино послужило толчком к дискуссиям о «призрачном актёрстве» [ghost acting][2909], [2910]. В вышедшем в конце 2020 г. предновогоднем рекламном ролике «Сбера» в роли Жоржа Милославского появился воссозданный при помощи нейронных сетей молодой Леонид Куравлёв[2911], что также спровоцировало активную полемику в прессе и социальных сетях[2912], [2913].

В наши дни самостоятельные эксперименты в области дипфейков может осуществить каждый желающий, для этого можно воспользоваться одним из инструментов с открытым исходным кодом — например Faceswap[2914] или DeepFaceLab[2915], [2916].

Современные генеративные модели могут также создавать видео на основе статических изображений. Например, авторы работы «Двигательная модель первого порядка для анимации изображений» (First Order Motion Model for Image Animation)[2917] демонстрируют, как нейросетевая модель заставляет двигаться фотографии и рисунки, привязав их к управляющему видео. Таким образом можно «оживить» портрет или старинное фото. В целом подход, базирующийся на генерации нового видео на основе геометрии опорного, приобрёл в последние годы заметную популярность. Управляющая информация из исходного видео извлекается при помощи различных вспомогательных нейросетей, например упоминавшейся ранее ControlNet или какой-либо сети, предназначенной для получения карты глубин, например MiDaS[2918]. Такой подход реализован, в частности, в моделях Gen-1 и Gen-2 от компании Runway Research[2919], [2920].

Успехи в области синтеза произвольных видео пока что куда более скромные. Модели, подобные DVD-GAN[2921] от DeepMind или TGAN-F[2922], — те же Gen-1 и Gen-2, Make-A-Video[2923], CogVideo[2924], Text2Video-Zero[2925], VideoFusion (она же ModelScope text2video 1.7B)[2926], [2927] — способны генерировать короткие фрагменты видео небольшого разрешения, при этом степень их правдоподобия пока оставляет желать лучшего. Впрочем, уже сейчас вы можете порадовать себя жутковатыми видеороликами с Уиллом Смитом, поедающим непокорные спагетти. В целом прогресс генеративных моделей в синтезе изображений оставляет мало сомнений в том, что и задача генерации видео будет в обозримом будущем решена на весьма качественном уровне.

6.6.11 Машина как композитор

Давайте теперь обратимся к успехам современных генеративных моделей в области музыки.

Интуитивно понятно, что музыка представляет собой некоторую последовательность — каждая музыкальная композиция имеет протяжённость во времени, но что является элементом этой последовательности? Что следует использовать в качестве отдельного токена в генеративной модели? Вопрос этот, как это ни странно, может иметь несколько разных ответов. Во-первых, музыку можно рассматривать как звуковой сигнал, в таком случае музыкальное произведение — это некий колебательный процесс, который можно выразить в амплитудном (последовательность амплитуд звуковой волны для каждого выбранного отрезка времени) или частотном (разложение на элементарные колебательные процессы) представлении (домене). Этот подход аналогичен подходу, применяемому при синтезе речи. Во-вторых, можно рассматривать музыку как нотный текст, в котором каждый инструмент играет (или не играет) определённую ноту (или аккорд) в каждом отдельно взятом такте музыкальной композиции. Этот подход абстрагируется от некоторых особенностей процесса извлечения звука — индивидуальных характеристик инструментов (гитара со стальными струнами звучит не так, как с нейлоновыми, и т. п.), нюансов звукоизвлечения (например, у флейты звучание ноты может зависеть от дыхания флейтиста и т. п.) — в общем, всего того, что не отражено в музыкальном тексте и что позволяет музыкантам-виртуозам проявлять свою индивидуальную манеру при исполнении одних и тех же произведений. Однако, несмотря на присущие ему потери и огрубление, у этого метода есть одно неоспоримое преимущество — он обеспечивает гораздо более компактное представление музыкальной информации, что сильно снижает требования к вычислительным затратам при создании и использовании соответствующих генеративных моделей. Именно поэтому исторически модели, работающие с нотным представлением музыки, появились и получили развитие раньше, чем модели, использующие звуковое представление.

Охота на электроовец. Большая книга искусственного интеллекта - image310.jpg

Синтез нотного текста — задача, сильно напоминающая задачу синтеза текста на естественном языке. Неудивительно, что история алгоритмической музыкальной композиции весьма напоминает историю развития систем для генерации текстов. Первые алгоритмы генерации музыки, так же как и алгоритмы для порождения текстов, появились задолго до первых ЭВМ.

Идея использования формальных методов в музыкальной композиции была известна уже в эпоху Античности. Например, Пифагор верил в связь между законами природы и гармонией звуков, выраженной в музыке[2928]. Само слово «музыка» имело для древних греков более широкое значение, чем в наши дни. В учении пифагорейцев музыка была неотделима от чисел, которые считались ключом ко всей духовной и физической вселенной. Система музыкальных звуков и ритмов, упорядоченная при помощи чисел, олицетворяла гармонию космоса[2929].

вернуться

2903

Reichert C. (2019). This deepfake shows an impressionist taking on 20 celebrities, convincingly / c|net, Oct. 10, 2019 // https://www.cnet.com/news/this-deepfake-shows-an-impressionist-take-on-20-celebrities-convincingly/

вернуться

2904

Grossman D. (2017). How LucasFilm Made Grand Moff Tarkin Look Real in 'Rogue One' / Popular Mechanics, Jan 6, 2017 // https://www.popularmechanics.com/culture/movies/a24641/grand-moff-tarkin-rogue-one/

вернуться

2905

Orange B. A. (2016). Lucasfilm Responds to Rogue One CG Character Backlash / MovieWeb, December 27, 2016 // https://movieweb.com/rogue-one-tarkin-leia-cg-character-backlash-lucasfilm/

вернуться

2906

Clarke C. (2017). How 3D scanning brought grand moff Tarkin back to life for Rogue One / 3D Printing Industry, January 27th 2017 // https://3dprintingindustry.com/news/3d-scanning-brought-grand-moff-tarkin-back-life-rogue-one-104458/

вернуться

2907

Itzkoff D. (2016). How ‘Rogue One’ Brought Back Familiar Faces / The New York Times, Dec. 27, 2016 // https://www.nytimes.com/2016/12/27/movies/how-rogue-one-brought-back-grand-moff-tarkin.html

вернуться

2908

Grossman D. (2018). Here's Harrison Ford Starring in 'Solo' Thanks to Deepfakes / Popular Mechanics, Oct, 17, 2018 // https://www.popularmechanics.com/culture/movies/a23867069/harrison-ford-han-solo-deepfakes/

вернуться

2909

Radulovic P. (2018). Harrison Ford is the star of Solo: A Star Wars Story thanks to deepfake technology / Polygon, Oct 17, 2018 // https://www.polygon.com/2018/10/17/17989214/harrison-ford-solo-movie-deepfake-technology

вернуться

2910

Winick E. (2018). How acting as Carrie Fisher's puppet made a career for Rogue One's Princess Leia / MIT Technology Review, October 16, 2018 // https://www.technologyreview.com/2018/10/16/139739/how-acting-as-carrie-fishers-puppet-made-a-career-for-rogue-ones-princess-leia/

вернуться

2911

Петров О. (2020). Как из четырёх минут речи мы воссоздали голос молодого Леонида Куравлёва / Хабр, 2 декабря // https://habr.com/ru/company/sberbank/blog/530876/

вернуться

2912

Буйлов М. (2020). Сберегательный образ жулика / Коммерсант. № 227 от 10.12.2020. С. 7 // https://www.kommersant.ru/doc/4604689

вернуться

2913

Старовойтов О. (2020). Сбер 2020 и его амбассадор Жорж Милославский / finversia, 13.12.2020 // https://www.finversia.ru/publication/sber-2020-i-ego-ambassador-zhorzh-miloslavskii-86613

вернуться

2914

https://github.com/deepfakes/faceswap

вернуться

2915

Perov I., Gao D., Chervoniy N., Liu K., Marangonda S., Umé C., Mr. Dpfks, Facenheim C. S., RP L., Jiang J., Zhang S., Wu P., Zhou B., Zhang W. (2020). DeepFaceLab: A simple, flexible and extensible face swapping framework // https://arxiv.org/abs/2005.05535

вернуться

2916

https://github.com/iperov/DeepFaceLab

вернуться

2917

Siarohin A., Lathuilière S., Tulyakov S., Ricci E., Sebe N. (2020). First Order Motion Model for Image Animation // https://arxiv.org/abs/2003.00196

вернуться

2918

Ranftl R., Lasinger K., Hafner D., Schindler K., Koltun V. (2019). Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer // https://arxiv.org/abs/1907.01341

вернуться

2919

Esser P., Chiu J., Atighehchian P., Granskog J., Germanidis A. (2023). Structure and Content-Guided Video Synthesis with Diffusion Models // https://arxiv.org/abs/2302.03011

вернуться

2920

Runway Research (2023). Gen-2: The Next Step Forward for Generative AI. // https://research.runwayml.com/gen2

вернуться

2921

Clark A., Donahue J., Simonyan K. (2019). Adversarial Video Generation on Complex Datasets // https://arxiv.org/abs/1907.06571

вернуться

2922

Kahembwe E., Ramamoorthy S. (2019). Lower Dimensional Kernels for Video Discriminators // https://arxiv.org/abs/1912.08860

вернуться

2923

Singer U., Polyak A., Hayes T., Yin X., An J., Zhang S., Hu Q., Yang H., Ashual O., Gafni O., Parikh D., Gupta S., Taigman Y. (2022). Make-A-Video: Text-to-Video Generation without Text-Video Data // https://arxiv.org/abs/2209.14792

вернуться

2924

Hong W., Ding M., Zheng W., Liu X., Tang J. (2022). CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers // https://arxiv.org/abs/2205.15868

вернуться

2925

Khachatryan L., Movsisyan A., Tadevosyan V., Henschel R., Wang Z., Navasardyan S., Shi H. (2023). Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators // https://arxiv.org/abs/2303.13439

вернуться

2926

Luo Z., Chen D., Zhang Y., Huang Y., Wang L., Shen Y., Zhao D., Zhou J., Tan T. (2023). VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation // https://arxiv.org/abs/2303.08320

вернуться

2927

Храпов А. (2023). Диффузионная нейросеть ModelScope text2video 1.7B — создаём видео по текстовому описанию у себя дома. / Хабр, 23 мар 2023 // https://habr.com/ru/articles/724284/

вернуться

2928

Maurer J. A. (1999). A Brief History of Algorithmic Composition // https://ccrma.stanford.edu/~blackrse/algorithm.html

вернуться

2929

Grout D. J., Palisca C. V. (2001). A History of Western Music. W. W. Norton & Company: New York // https://books.google.ru/books?id=OdGOPwAACAAJ

294
{"b":"936964","o":1}