Вслед за образованием гидрида гелия реализовались реакции с участием атомов водорода и протонов, которые привели к появлению молекулярного водорода. Такое объединение обеспечило стабильность водородного вещества, поскольку атом с одним электроном является нестабильным в условиях космоса. Гигантские облака молекулярного водорода являются основным исходным материалом для формирующихся звезд и галактик. Затем последовали реакции образования гидрида лития и других молекул. Эти химические соединения широко распространились в молодой Вселенной. По мере дальнейшего развития природы в пределах Вселенной вслед за первыми молекулами стали формироваться во все большем количестве и разнообразии более сложные соединения.
Наши космические гиды также преобразовались в нейтральные атомы. Чтобы стать нейтральными атомами водорода (протия), Гидрожену, Оксижену и Нитрожену достаточно было захватить на орбиту своего влияния по одному электрону. Ядра гелия – Карбовеж, Карбомал, Флюор, Ферум для превращения в атомы гелия присоединили по два электрона. В этом виде они продолжили существовать до определенной поры, неся в себе потенциал встречи с другими элементами, чтобы образовать более сложные природные формы. Похоже, атомы обладали не только свойствами исходного материала для многообразных природных форм, но и каким-то встроенным механизмом обязательной реализации этих свойств.
Появление атомов и первых молекул явилось важным рубежом на пути эволюции природы к человечеству, поскольку тем самым открылись неограниченные возможности формирования всё более сложных природных форм на основе химических соединений. Если бы по каким-то причинам в нашей Вселенной не осуществились реакции синтеза сложных химических соединений, то не появились бы молекулы водорода (Н2), без которых не возникли бы первые звезды. В отсутствии этих звезд не синтезировались бы все химические элементы тяжелее гелия, без которых не появились бы звезды следующих поколений и планеты. Не было бы жизни и человека. Так, что начало химических процессов можно отнести к одному из необходимых событий, без которых не продолжилась бы эволюция природы по направлению к человечеству.
Вещество получило доминирующее положение над излучением. Гравитация, которая до этого не имела никакого влияния во Вселенной, приняла роль ведущей силы. Нейтральные атомы водорода и гелия явились исходным материалом для межзвездного газа и звездных систем.
Спустя 5 млн. лет ПБВ температура Вселенной упала до 600°К, поэтому реликтовые фотоны перешли в инфракрасную зону. В результате космос накрыла беспросветная темнота. Первыми светлыми точками, рассеивающими темноту, стали самые ранние звезды, которые зажглись приблизительно через 100–200 млн. лет после Большого взрыва. Процесс образования первых звезд (звездное население III с нулевой металичностью), в которых происходил синтез элементов тяжелее гелия (в астрофизике, эти элементы называются металлами), был запущен благодаря рекомбинации водорода и гелия, а также содержанию молекул иона гидрита гелия. Звезды населения III состояли в основном из первичного материала (водорода, гелия и гидрида гелия) и в значительной части, были очень массивными, что способствовало быстрому использованию водорода на синтез гелия. Поэтому они уже давно прекратили свое существование. За относительно короткое время своего ядерного горения они успели синтезировать комплект химических элементов вплоть до железа. После прекращения ядерных реакций эти звезды взрывались в форме сверхновых звезд, что приводило к разбрасыванию по Вселенной всех произведенных элементов. Первые массивные звезды преобразовались в самые ранние, суперплотные объекты гравитационного происхождения – черные дыры и квазары. На следующем этапе эволюции вещество Вселенной начало концентрироваться в ранних формах галактик и газопылевых туманностей.
Следующее, второе поколение звезд (население II) сформировалось из газопылевого материала звезд первого поколения. Эти звезды имели уже более высокое содержание тяжелых элементов, чем у своих предшественников, но их металичностью оставалась еще малой. Среди звезд второго поколения сформировались как маломассивные, так и очень крупные объекты. Самые массивные звезды второго поколения прошли весь свой эволюционный путь, создав очередные порции тяжелых элементов и разбросав их в межзвездной среде. Это обеспечило условия для появления звезд третьего поколения (населения I), включая Солнце, которые в своем составе содержат максимальное на сегодня количество металлов.
Те звезды, которые имеют малую массу, обеспечивали условия для медленного темпа термоядерных реакций и, соответственно, для длительного их существования. Они излучают энергию до сих пор во многих галактиках, включая нашу. Например, новые наблюдения астрономов выявили в нашей Галактике одну из первых звезд во Вселенной, существующую до сих пор, несмотря на возраст около 13,5 млрд. лет. Масса этой звезды – небольшая, немного превосходящая необходимую для начала ядерной реакции синтеза гелия. Открытие этой звезды в Галактике свидетельствует о появлении первых звезд не позже 300 млн. лет ПБВ, а также о возникновении нашей Галактики Млечный путь около 13,5 млрд. лет. Атомы гелия – Карбовеж, Карбомал, Флюор, Ферум и атомы водорода – Гидрожен, Нитрожен и Оксижен не участвовали в начале формирования Млечного пути, поскольку в течение около 1,8 млрд. лет (от ~ 13,51 млрд. л.н. до 11,7 млрд. л.н.) находились на значительном удалении – в межзвездном пространстве.
Наши космические гиды за этот продолжительный период межзвездного путешествия стали свидетелями эволюции состава, объектов и структуры Вселенной. Химические элементы, известные нам по таблице «Периодическая система химических элементов Д.И. Менделеева», представляют обычное, видимое вещество, доля которого около 4 % от всей материи Вселенной. Видимым оно называется потому, что объекты из этого вещества человек может видеть непосредственно (видимый диапазон электромагнитного излучения) или наблюдать с помощью специальных приборов (различных антенн, телескопов). Обычное вещество во Вселенной находится в основном в трех видах: 1- плазмы, состоящей из ионизированных атомов с различной плотностью и температурой; в таком состоянии пребывают звезды с их оболочками, некоторые оболочки планет, газовые туманности, космические лучи – потоки элементарных частиц, в первую очередь, электронов и протонов разных энергий. Кроме того, в космических лучах выявлены также атомные ядра с низкой массой (гелий, углерод и кислород) и более тяжелые ядра (неон, магний и кремний); 2- разнообразных химических соединений в твердом, жидком или газообразном состоянии при сравнительно низкой температуре; химические соединения слагают планеты, астероиды, метеориты, кометы, пылевые туманности; 3- сверхплотного вещества, находящегося в белых карликах, нейтронных звездах, а также в таких космических объектах, как: ядра планет, черные дыры, образованные за счёт гравитационного коллапса (сжатия, схлопывания) крупной звезды или в сверхплотной материи в момент начального расширения Вселенной. Доподлинно не известно, что происходит со структурой атомов в таком веществе. В последнее время предложена гипотеза, согласно которой вещество в таких объектах «раздавлено» до кварков – составных частиц атомных ядер. Кварки в этом состоянии распределены по отдельным капелькам, которые получили название «страпельки». Каждая страпелька содержит по три кварка разного сорта («верхние», «нижние» и «странные»), что отличает ее от обычного протона или нейтрона, которые состоят из трех кварков двух сортов («верхние», «нижние»).
Состояние вещества, так же, как и его химический состав, тесно связаны с процессом эволюции звезд, планет и других космических тел во Вселенной. Основная масса обычного, барионного вещества сосредоточена в межзвездном газе и пыле (3,6 % массы Вселенной). На звезды и прочие концентрированные формы видимого вещества, включая земную жизнь, приходится только 0,4 %.