Литмир - Электронная Библиотека
Содержание  
A
A

Я не могу определить скорость, с которой каждое тяжелое тело начинает падать, поскольку это исключительно вопрос факта и эта скорость зависит от скорости тонкой материи…1637

В начале 1640-х годов Декарт несколько раз возвращался к задаче о свободном падении тел, надеясь каким-то образом совместить галилеевский закон (s ~ t2) со своей теорией вихрей и основанной на ней теории тяготения. При этом он был по-прежнему убежден, что ускорение свободного падения тела зависит от его массы и линейных размеров1638. Однако, как справедливо заметил У. Шей, «the mathematics of free fall is at variance with the physics of a plenum. What one part of Descartes’ system demands, the other rejects»1639. В результате – не только потеря «ясности и четкости» понимания, но и невозможность строгой математической трактовки физических явлений.

ПРЕВРАТНОСТИ МЕТОДА

Итак, я рассмотрел предпринятые Декартом – в основном неудачные – попытки описать и объяснить явление свободного падения тел. Подобных неудач в «натурфилософской» биографии французского философа было немало. Почему Декарт «проиграл бой» (М.К. Мамардашвили) Галилею, Ньютону, Лейбницу и многим другим создателям математики и естествознания Нового времени?1640 На мой взгляд, причина коренится отнюдь не в недостаточной одаренности философа или в ограниченности научных знаний эпохи. Последнее обстоятельство, разумеется, сыграло свою роль, но главное все-таки не в этом. Основными помехами стали для Декарта его философско-методологические позиции.

На первый взгляд это кажется странным. Ведь и Декарт, и Галилей, и Ньютон говорили подчас об одном и том же. Действительно, Декарт – еще раз напомню цитированный выше фрагмент из заключительных страниц «Principia Philosophiae» – допускает, что описанные им причины «таковы, что все действия, которые могут из них произойти, окажутся подобными действиям, замечаемым нами в мире», даже если в действительности явления произошли по каким-то иным причинам»1641. О том же спустя шестьдесят с лишним лет говорил и Ньютон1642, а спустя примерно сто сорок лет – Антуан Лоран Лавуазье1643.

Как и Галилей, Декарт широко использовал (или по крайней мере старался использовать) математические методы в своих физических исследованях. «Toute ma Physique, – писал Декарт Мерсенну в июле 1638 года, – n’est autre chose que Géometrie»1644. То, что абстрактные математические рассуждения выявляют «непостижимую эффективность» (Вигнер) при изучении природных явлений, казалось чудом. Однако и Галилей, и Декарт полагали, что вообще неправомерно различать и тем более противопоставлять физику и математику, поскольку «природа говорит на языке математики» (Галилей) и «действует во всем математически» (Декарт)1645. Кроме пространственной протяженности материальных тел, в физическом мире, лишенном пустоты, ничего нет. Но если физика – это геометрия, то не является ли тогда она (физика) просто мысленной конструкцией? По Декарту и Галилею, математический характер новой науки имеет своим источником, как выразился У. Шей, «сам стиль Природы (a very style of Nature1646. Однако как было показано выше, картезианские механизмы-причины физических явлений оказывались настолько сложными, что ни о каком математическом описании физической реальности не могло быть и речи1647. Его géometrie – это вовсе не géometrie abstraite (как это было, скажем, у Ньютона), но géometrie concrète, описывающая «du sel, de la niege, de l’arc-en-ciel etc»1648. Но из этого, по мнению французского философа, никак не следует, что анализ физических явлений должен сводиться к их описанию (словесному или математическому), не затрагивая их причин.

Декарт упрекал Галилея в том, что тот вывел свой закон свободного падения из самого явления, а не из его причины, которую итальянский физик не знал. Сам Галилей хорошо понимал это обстоятельство, что видно их следующего фрагмента «Dialogo»:

Сальвиати. <…> Что именно движет частицы Земли вниз?

Симпличио. Причина этого явления общеизвестна, и всякий знает, что это тяжесть.

Сальвиати. Вы ошибаетесь, синьор Симпличио, вы должны были бы сказать – всякий знает, что это называется тяжестью, но я вас спрашиваю не о названии, а о сущности вещи1649.

Однако дальше констатации этого обстоятельства герои Галилеева «Dialogo» не пошли, что категорически не устраивало Декарта. Французский мыслитель полагал, что подход Галилея, допускавший оперирование силой (или более общо – причиной), природа которой остается невыясненной, должен быть заменен иным подходом, более строгим, последовательным и систематическим, предполагающим выявление истинных и достоверных причин явлений. Иными словами, Декарт считал возможным и необходимым распространить математически строгий подход на рассмотрение всех природных явлений. Для этого, по его мнению, следовало исключить из рассуждений о природе все концепции, которые:

– не могут быть ясно и отчетливо определены;

– несовместимы с контактным действием, рассматриваемым как универсальная причина любых природных изменений1650.

За этими требованиями стояла убежденность Декарта в том, что рациональное знание обязательно включает в себя знание своих собственных оснований.

В силу сказанного Декарт отрицал правомерность использования понятия пустоты в рассуждениях о физическом мире, поскольку, допуская пустоту, мы допускаем возможность действия на расстоянии (действия «через пустоту»), что в свою очередь ведет к признанию неких оккультных или магических сил или «влияний». Поэтому Декарт видел свою задачу в создании механической теории движения тел, в том числе и теории свободного падения. Следовательно, тяжесть тела не может рассматриваться ни как свойство, присущее материи, это тело образующей, как полагал Аристотель, ни как результат притяжения Земли, как предполагал, к примеру, Бекман. Декарт предложил теорию свободного падения, построенную на концепции контактного взаимодействия тел и теории вихрей.

Галилей (как впоследствии Ньютон), описывая некое механическое явление (скажем, свободное падение), элиминировал из него все факторы и обстоятельства, которые представлялись ему «помехой» для выявления сути этого явления. По мысли Галилея, все «то, что происходит конкретно, имеет место и в абстракции»1651. И потому «философ-геометр, желая проверить конкретно результаты, полученные путем абстрактных доказательств, должен сбросить помеху материи, и если он сумеет это сделать, то <…> всё сойдется не менее точно, чем при арифметических подсчетах. Итак, ошибки заключаются не в абстрактном, не в конкретном, не в геометрии, не в физике, но в вычислителе, который не умеет правильно вычислять»1652. Сказанное означало, что «помехи» не мешают чему-либо стать в соответствие с математической теорией. «Помеха материи» может быть удалена «отслаиванием» ее от явления, но суть явления при этом не меняется. Если же отклонение физического тела от математического обусловлено только ошибкой вычисления, то это означает, что в действительности никакого отклонения не существует, просто ученый (если угодно, вычислитель – calcolatore) «non sa fare i conti guisti», не умеет правильно вычислять, ошибочно принимая, скажем, несовершенную физическую сферу (то есть не сферу) за совершенную.

вернуться

1637

AT, III. Р. 37.

вернуться

1638

См., например, его письмо Мерсенну от 23 марта 1643 года (Ibid. P. 643).

вернуться

1639

Shea W. R. The Magic of Numbers and Motion… P. 315.

вернуться

1640

Философы и историки науки часто ссылаются на то, что Декарт «проиграл» этот бой только в XVII веке, но «потом физика XX века показала, что в умозрительном плане» он все же был прав (Мамардашвили М.К. Картезианские размышления… С. 156), что время внесло в критику картезианства «смягчающие поправки» (Дудник С.И., Солонин Ю.Н. Декарт и картезианство в новой парадигме рационализма… С. 150). Если под «смягчающими поправками» иметь в виду современные представления о природе вакуума и вообще идеи квантовой теории поля, то, разумеется, некую отдаленную аналогию в «схематике мышления» и некую, опять-таки довольно отдаленную, общность базовых концепций картезианства и современной физики найти можно, но эти аналогии, по моему мнению, все же довольно поверхностны (вроде аналогий между алхимической идеей трансмутации металлов и теорией ядерных реакций). Слишком сильно отличаются «подосновы» (философские и физические) указанных воззрений. И еще одно обстоятельство необходимо учитывать: зачастую то в идейном наследии прошлого, что с нашей современной (и также исторически преходящей) точки зрения представляется рациональным зерном (например, ранние, скажем XVI – XVII веков, рассуждения о природе теплоты с позиций корпускулярно-кинетических теорий), для минувших эпох и в аспекте общего (поступательного) развития науки оказывается тормозом. (К примеру, пока не были разработаны идеи и методы статистической физики – а это потребовало прохождения научной и философской мыслью долгого и весьма извилистого исторического пути в лабиринтах европейской культуры, а не только карабканья по «горным тропам» физико-математических дисциплин, – корпускулярно-кинетические теории не давали, в отличие от «флюидных» теорий тепла, никаких значимых результатов.) И если бы Ньютон (здесь «Ньютон» – имя не только собственное, но и нарицательное) в свое время не преодолел картезианства, то в XX веке ученым и философам не пришлось бы говорить об «умозрительной правоте» французского мыслителя.

вернуться

1641

Декарт Р. Сочинения… Т. I. С. 419 – 420.

вернуться

1642

Напомню еще раз его слова из Opticks: «Я здесь использую это слово [Attraction] только для того, чтобы обозначить в общем некую силу, посредством которой тела стремятся (tend towards) друг к другу, какова бы ни была причина [этого стремления]» (Newton I. Opticks… P. 376).

вернуться

1643

«Мы вовсе даже не обязаны предполагать, что теплород – это реальное вещество, достаточно <…>, чтобы это была лишь какая-нибудь причина отталкивания, раздвигающая молекулы, что позволяет рассматривать явления абстрактно и математически» (Lavoisier A. Traité élémentaire de chimie… P. 5 – 6).

вернуться

1644

AT, II. P. 268.

вернуться

1645

AT, III. P. 37.

вернуться

1646

Shea W.R. Descartes… Р. 579.

вернуться

1647

Кроме того, «Principia Philosophiae», как и другие работы Декарта, посвященные хотя бы отчасти натурфилософской проблематике, не используют математического подхода, за исключением параграфов, в которых речь идет о трех законах природы и семи правилах соударений твердых тел. Однако далее эти правила и законы используются спорадически. Более того, как заметил сам Декарт в письме Шаню (Chanut) от 26 февраля 1649 года, «…нет необходимости <…> останавливаться на рассмотрении правил движения, которые изложены в параграфе 46 второй части [«Principia Philosophiae»] и в последующих параграфах, по причине того, что это не является необходимым для понимания остального» (AT, V. P. 291).

вернуться

1648

AT, II. P. 268.

вернуться

1649

Галилей Г. Диалог… С. 97 – 555; С. 334.

вернуться

1650

Согласно первому картезианскому «закону природы», каждая вещь, поскольку она проста, продолжает пребывать в одном и том же состоянии («quod unaquaeqaeque res, quantum in se est, semper in eodem statu perseveret») и изменяет его только от встречи (контакта) с другими телами (AT, VIII – 1. P. 62; о выражении quantum in se est («своей собственной силой»), восходящем, по-видимому, к Лукрецию Кару, см.: Cohen I.B. Quantum in se est…). Согласно второму закону, всякое не встречающее препятствий движение совершается в природе по прямой (см.: AT, VIII – 1. P. 62).

вернуться

1651

Галилей Г. Диалог… С. 307.

вернуться

1652

Там же.

147
{"b":"820479","o":1}