Учитывая отмеченное Галлупом и Норбеком [40] равенство
(4.64)
выражение(4.62) можно привести к чрезвычайно простому виду
(4.65)
В частном случае одноэлектронной системы, состояние которой описывается орбиталью
(4.66)
диагональные элементы матрицы плотности равны
(4.67)
(4.68)
Эта формула, то чиее ее правая часть, приводилась в работе [40], но лишь в качестве промежуточного результата. Окончательное выражение для заселенностей (по Галлупу и Норбеку) получалось путем нормирования n-а на единицу:
(4.69)
Обобщение формулы (4.69) на многоэлектронные системы, очевидно, должно осуществляться заменой |Са|2 на Раа:
(4.70)
Однако такой подход к проблеме является ошибочным. Расчеты свидетельствуют, в частности, о чрезмерно больших значениях n(GN) для АО внутренних оболочек и неподеленных электронных пар. Например, в молекуле LiH:
Заселенность перекрывания орбитали φа с остальными орбиталями неортогонального базиса φ определяется как разность между полной и неподеленной заселенностями:
(4.71)
Заселенность перекрывания
представляет ту долю полной электронной заселенности, которая принадлежит одновременно к рассматриваемой и всем прочим базисным АО. Нетрудно убедиться в том, что величина
равна нулю, если АО φ
а не перекрывается ни с одной из орбиталей базиса φ, т. е. если
(4.72)
для всех b≠a.
Аддитивная заселенность.
Сумма засел енностей n+a или n-а по всем базисным орбиталям совпадает с числом электронов (N) в рассматриваемой системе только в том случае, если эти орбитали ортогональны. Иными словами, заселенности орбиталей неортогонального базиса неаддитивны.
Чтобы определить аддитивные заселенности АО, необходимые, например, для вычисления формальных зарядов атомов, следует сопоставить каждой АО φа неортогонального базиса орбиталь φλa некоторого ортонормированного базиса. Требование минимальной деформации исходных орбиталей в процессе ортогонализации однозначно отбирает из всех возможных методов ортогонализации "симметричный" метод Лёвдина (рис. 24)
(4.73)
Рис. 24. Геометрическая иллюстрация лёвдинской ортогонализации двух неортогональных векторов φ1 и φ2
Как показали Слэтер и Костер, ортонормировка по Лёвдину сохраняет трансформационные свойства неортогонального базиса в том смысле, что при унитарном преобразовании базиса {φ} соответствующий лёвдинский базис {φλ} преобразуется той же унитарной матрицей. Отсюда следует, в частности, что орбитали φλа исходного многоцентрового базиса АО и соответствующие им орбитали φλa преобразуются по одним и тем же представлениям подгруппы GA точечной группы симметрии молекулы (G). При этом подгруппа GA включает только те преобразования группы G, которые не затрагивают центр А (т, е, ядро атома A). Таким образом, орбитали φa и фλa обладают одинаковыми свойствами симметрии относительно указанных преобразований.
Согласно теореме Карлсона и Келлера, лёвдинский базис
отличается от всех прочих базисов, полученных ортогонализацией исходного базиса {φ}, максимальной близостью к {φ} в смысле минимума среднеквадратического отклонения
(4.74)
Представление об изменении формы и размеров атомных орбиталей при их ортогонализации можно получить, сравнивая средние значения
и
или среднеквадратические радиусы
Для сферических АО с соответствующими значениями для ортогонализованных орбиталей. Такие вычисления (в табл. 8 приведены результаты для молекулы N
2) свидетельствуют, что орбитали лёвдинского базиса, соответствующие валентным АО, могут быть локализованными в окрестности атомных ядер в большей степени, чем исходные. Сжатие орбиталей наблюдается как в "поперечном", так и в "продольном" направлениях. 1s-Орбитали внутренних оболочек при ортогонализации несколько расширяются, оставаясь тем не менее существенно локализованными у своих ядер. Среднеквадратический радиус этих орбиталей в несколько раз меньше, чем валентных.
Таблица 8. Средние значения
и среднеквадратические радиусы
характеризующие АО азота и соответствующие лёвдинские орбитали в молекуле N
2С учетом сказанного выше, аддитивные (лёвдинские) заселенности (n0) орбиталей неортогонального базиса φ следует отождествлять с заселенностями соответствующего лёвдинского базиса:
(4.75)
Формальный заряд qA атома А определяется зарядом его ядра ZA и аддитивными заселенностями представляющих этот атом орбиталей:
(4.76)div> формальные заряды атомов отражают перераспределение электронной плотности при образовании молекулы и являются полезной характеристикой валентного состояния атома. В частности,они позволяют производить интерполяцию атомных свойств по известным свойствам свободных атомов. Так, потенциалы ионизации химически связанных атомов могут оцениваться по формуле
(4.77)
Следует отметить сильную зависимость потенциала ионизации Вот заряда атома. Несколько примеров, характеризующих эту зависимость, приведено в табл. 9.
Таблица 9. Зависимость орбитальных потенциалов ионизации от атомного заряда q (экспериментальные данные) [27]
Формальные заряды атомов используются часто для оценки энергии электростатического взаимодействия
(4.78)
и для определения дипольных моментов больших молекул в точечном приближении
(4.79)