(4.8)
и определяется по формуле
(4.9)
Использование матрицы плотности вместо волновой функции устраняет указанную выше неоднозначность в квантовомехани-ческом описании состояния частицы. В то же время такое описание является более общим и позволяет характеризовать одночастичные состояния для систем, содержащих несколько различных или тождественных частиц, хотя точное описание этих состояний с помощью волновых функций невозможно.
Пусть некоторое состояние W-электронной системы задано антисимметричной нормированной функцией Ψ(x1,..., xN), где хi обозначает совокупность пространственных координат (ri) и спиновой переменной (σi) i-гo электрона. Тогда N-электронная матрица плотности ρN определяется аналогично одноэлектронной (4.6):
(4.10)
Диагональные элементы матрицы плотности ρN характеризуют вероятность того, что первый электрон локализован в точке x1, в то время как второй — в точке х2, третий — в точке х3 и т д. Конечно, в силу неразличимости электронов их нумерация является произвольной.
Рассматриваемые N электронов могут входить в состав системы включающей также и другие частицы. Например, молекулы состоят из электронов и атомных ядер, образующих единую систему. Пусть состояние последней определяется нормированной функцией Φ(x1,..., xN,ξ), причем ξ обозначает совокупность переменных всех частиц, не являющихся электронами (т. е. ядер). Состояние N-электронной системы в общем случае не может описываться Ψ-функцией и в этом смысле не является чистым[34]. Но оно может характеризоваться N-частичной редуцированной матрицей плотности:
(4.11)
Термин "редуцированная" в применении к матрице плотности означает, что некоторые переменные в левом и правом наборах ее аргументов отождествляются
и затем по ним проводится интегрирование.
Подобным образом определяются редуцированные матрицы плотности для k-электронных подсистем N-электронной системы:
(4.12)
Целесообразность введения множителя
обусловлена тождественностью электронов. В частности, редуцированная одноэлектронная матрица плотности определяется через N-электронную равенством
(4.13)
и нормирована на число электронов N:
(4.14)
Часто используют бесспиновую матрицу плотности
(4.15)
где проведено интегрирование (или суммирование) по спиновой переменной σ.
Отметим теперь некоторые используемые в дальнейшем математические свойства редуцированных матриц плотности.
Вследствие антисимметричности N-электронной функции Ψ (или Φ) относительно перестановок электронных переменных
(4.16)
k-частичные матрицы плотности при
антисимметричны в левой и правой группах аргументов, разделенных вертикальной чертой:
(4.17a)
(4.17б)
Из определения ρk следует также, что
(4.18)
Учитывая сказанное на с.102 об интегральном представлении операторов
, мы можем утверждать, что матрица плотности является ядром некоторого эрмитового оператора
k-частичной плотности вероятности
ρk:
He следует думать, однако, что этот оператор соответствует некоторой наблюдаемой физической величине. Его роль в квантовой теории состоит в том, что он характеризует состояние N-электронной системы в той мере, в какой это необходимо для определения ожидаемого значения любой физической величины, представленной суммой k-электронных операторов. При этом последние не зависят от состояния рассматриваемой многоэлектронной системы. Среднее значение оператора
для некоторого
k-электронного состояния определяет заселенность этого состояния. Собственные функции
оператора
называются функциями
"естественных" k-частичных состояний, а собственные значения —
естественными заселенностями n
(k)ν. Функции
определяющие одночастичные состояния с заселенностями
называются
естественными спин-орбиталями и удовлетворяют уравнению
(4.20)
Бесспиновые ψν(r), удовлетворяющие аналогичному уравнению на собственные значения матрицы плотности ρ(r|r') называются "естественными" орбиталями.
В качестве примера рассмотрим молекулу водорода Н2. Естественные молекулярные орбитали для этой молекулы определяются исключительно из соображений симметрии (если их ищут в виде линейной комбинации двух атомных 1s-орбиталей) и классифицируются на симметричную (g) и антисимметричную (u) МО:
В то же время естественные заселенности связывающего (ψg) и разрыхляющего (ψu) одноэлектронных состояний зависят от способа построения полной двухэлектронной функции молекулы Н2 из одноэлектронных (табл. 3).
Таблица 3. Естественные заселенности в молекуле H2 [35]
Матрицу плотности ρ(r|r'), как и матрицы плотности более высокого порядка, можно представить через "естественные" заселенности и соответствующие естественные функции в виде естественного разложения:
(4.21)
Такое представление матрицы плотности обобщает приведенное выше выражение (4.6) для одноэлектронной матрицы плотности "чистого" состояния одного электрона с определенной ψ-функцией. В случае многоэлектронной системы отдельному электрону уже нельзя сопоставить какую-либо функцию ψ(r). Состояние электрона в многоэлектронной системе является "смешанным" и описывается одноэлектронной матрицей плотности ρ(r|r') или набором функций ψν(r) и соответствующих им "чистых" состояний. При этом вероятность пребывания электрона в состоянии, определяемом функцией ψν, характеризуется естественной заселенностью nν.