Литмир - Электронная Библиотека
Содержание  
A
A

Что касается ветровой эрозии — объяснения, излюбленного многими учеными, — Торун приходит к следующему выводу:

«Никакие дюны не могут образовать симметричный пятиугольник, напоминающий рассматриваемую форму. Плоские стороны и прямые углы не наблюдались ни в марсианских, ни в земных песчаных дюнах.

Преобладающие ветра не могли изменять направление с такой точностью или периодичностью, чтобы создать требуемую форму. Но даже если это почти невероятное условие было бы выполнено, другой фактор препятствует образованию такого объекта… Местные обратные воздушные потоки и связанные с ними зоны поверхностной турбулентности помешают формированию такой гипотетической пятиугольной структуры. Каждый раз, когда ветер изменит направление, обратный воздушный поток начнет эродировать края, образованные ветром, дувшим в другом направлении. В конце концов получится не пирамида, а холм округлой формы» [б].

Выводы Торуна по этому вопросу хорошо соотносятся с безуспешными попытками НАСА воспроизвести пирамидальные формы ландшафта в аэродинамической трубе. Сходным образом никакие структуры, образованные в результате трещиноватости, не могут привести к формированию пятиугольника: вероятность существования пяти геологических разломов с последующим сбросом материала и образованием многоугольника с двусторонней симметрией практически равняется нулю.

Что касается вулканизма и роста кристаллов, то на равнине Сидония нет никаких признаков вулканической деятельности и в природе не встречается пятиугольных кристаллов. Так или иначе, кристаллы имеют полностью симметричную форму, а пирамида D&M, несмотря на двустороннюю симметрию, содержит разные углы и имеет разную длину сторон.

Как насчет неизвестных эрозионных сил? В конце концов, Марс и Земля — это две разные планеты. Вот что говорит Торун:

«Все современные наблюдения геофизических процессов на Марсе, его гравитации, метеорологических и геоморфологических условий указывают на то, что здесь действуют такие же законы физики и принципы геоморфологии с незначительными вариациями, связанными с силой тяготения, плотностью и составом атмосферы. Нелогично предполагать, что на поверхности Марса существует один небольшой участок, где эти принципы были нарушены» [7].

Инопланетная архитектура

Не удовлетворившись достигнутым, Торун испытал предполагаемое искусственное происхождение пирамиды D&M серией наводящих вопросов:

1. Согласуется ли геометрическая форма объекта с известными формами ландшафта и геоморфологическими процессами?

2. Сориентирован ли объект по сторонам света и/или на важные астрономические события?

3. Имеет ли объект координацию с другими объектами, которые тоже не согласуются с окружающей обстановкой? Если да, имеют ли они взаимную геометрическую расстановку?

4. Выражает ли геометрия объекта математически значимые числа и/или симметричные формы, которые ассоциируются с архитектурой?

На первый вопрос легко ответить. Как мы могли убедиться, пятиугольную форму пирамиды D&M нельзя объяснить известными геоморфологическими процессами. Что касается второго вопроса, пирамида действительно сориентирована по марсианским сторонам света. В ответ на третий вопрос Торун утверждает следующее:

В передней части пирамиды… есть три угла, разделенные по интервалам в 60°. Центральная ось указывает на «Лицо». Край, расположенный слева от этой оси, указывает на центр структуры, названной «Городом». Край, расположенный справа от центральной оси, указывает на вершину куполоподобной структуры, известной как «Толус» [8].

С точки зрения Торуна, эти три ориентировки являются важным свидетельством искусственного происхождения. В конце концов, могут ли случайно возникшие геологические формы быть расположены с такой точностью по отношению друг к другу? И вообще, можно ли найти аномальную структуру, необъяснимую с геологической точки зрения, сориентированную по сторонам света и по отношению к другим аномальным структурам, которая тем не менее имела бы стопроцентное естественное происхождение?

Вы скажете: такое почти невероятно, но все-таки может случиться.

Но что, если эта структура также соответствует критериям, указанным в вопросе № 4?

Реконструкции

Для ответа на этот вопрос Торуну пришлось смоделировать первоначальную форму поврежденной и эродированной пирамиды. Он справедливо указал, что теперь это является стандартной процедурой в реконструктивной археологии, особенно для монументов, имеющих астрономические ориентировки или находящихся в специфических геологических условиях. После создания модели он произвел измерения, чтобы установить, обладает ли она важными математическими характеристиками. Он не стал углубляться в сложную «нумерологию» и ограничился лишь следующими основными измерениями:

1. Радиальное значение наблюдаемых углов.

2. Оценка соотношений между наблюдаемыми углами.

3. Оценка синусов, косинусов и тангенсов измеренных углов на предмет присутствия математически значимых чисел.

«Эти оценки были выбраны из-за их простоты, достоверности и независимости от нашего условного обозначения углов как частей 360-градусной окружности», — объясняет Торун.

Взяв ортографическую проекцию пирамиды, Торун измерил все видимые углы с погрешностью (±)0,2° [9]. Эти замеры дали ряд математических отношений. Основываясь на том, что искусственный монумент будет иметь осмысленные размеры и пропорции, Торун стал изучать эти отношения.

Для того чтобы понять результаты его работы, сначала необходимо провести краткий экскурс в области священной геометрии.

Священные числа

В V веке до н. э. посвященные математических и геометрических мистерий философа Пифагора сообщали о своей принадлежности к братству тайным знаком. Встретив незнакомца, пифагореец предлагал ему яблоко. Если незнакомец тоже был пифагорейцем, он разрезал яблоко поперек через центр, чтобы открыть косточки, расположенные в форме пентаграммы [10].

Пентаграмма была священным символом пифагорейцев из-за своей связи с математической мерой, известной как «золотое сечение», или отношение φ:

«Нет сомнения, что греческие скульпторы и архитекторы включали это соотношение в свои произведения. Знаменитый греческий скульптор Фидий с успехом пользовался им. Самым наглядным его примером являются пропорции Парфенона» [11].

Соотношение φ получило свое название в честь Фидия. Оно является идеальным соотношением между двумя отрезками, которое производит наилучшее эстетическое впечатление, будучи включенным в пропорции произведения искусства или архитектуры. Прямоугольник, состоящий из сторон, соотношения между которыми основаны на «золотом сечении», будет более приятным на вид, чем любой другой прямоугольник.

Посмотрите на линию ABC:

А----В--------С.

Соотношение φ показано на рисунке, на котором длина отрезка AB также соотносится с длиной отрезка ВС, как длина отрезка ВС соотносится с длиной отрезка АС. Для возникновения такого эффекта соотношение должно составлять 1: 1,61803398.

Эстетический эффект золотого сечения остается загадкой, но пифагорейцы рассматривали его как отражение природной гармонии; то же самое число широко распространено в мире природы и органической жизни. Его можно найти в спиралевидной раковине улитки и в расстояниях между листьями на ветвях деревьев [12]. Пропорции человеческого тела также соответствуют золотому сечению — к примеру, отношение длины тела от головы до пояса и от пояса до ступней.

Пифагорейцы утверждали, что «число является мерой всех вещей», и пользовались геометрией как метафорой для более высоких концепций и метафизических построений. Для них φ было воплощением красоты — не субъективным мнением, как в пословице «Красота находится в глазах смотрящего», но качеством, внутренне присущим самому объекту. Красота находится в созерцаемом.

Vesica piscis

Золотое сечение также воспроизводится в одной из самых священных геометрических форм — vesica piscis, или «сосуд рыбы», — состоящей из двух одинаковых перекрывающихся окружностей, центр каждой из которых расположен на другой окружности.

26
{"b":"252517","o":1}