Литмир - Электронная Библиотека
Содержание  
A
A

Заметим, что и Планк, объяснив закон теплового излучения посредством гипотезы квантов, говорил исходно лишь о связи E=hfэнергии осцилляторов (электронов в атоме) — с частотой их колебаний f(§ 4.1, § 4.2). А, раз именно такую связь даёт бипирамидальная модель атома, из неё сразу следует закон излучения Планка. Лишь позднее классическую идею Планка извратили так, будто энергия квантуется: свет излучается квантами, фотонами. Судьба идей Планка напоминает историю открытий Ритца. Их выводами воспользовались адепты неклассической физики, проигнорировав классические идеи, в рамках которых эти выводы были получены.

Рассмотренный механизм образования фотоэлектронов приводит к выводу, что фотоэффект можно наблюдать лишь в некотором диапазоне частот. Раз энергия электрона E=MV 2/2 =hf, а его скорость связана с радиусом орбиты Rзависимостью V=Rf, то f=h/2 R 2 M. Но радиус Rорбиты электрона в атоме не может быть ни слишком велик, ни слишком мал, а, значит, и диапазон частот излучения, выбивающего электроны, ограничен сверху и снизу. Электрон не должен находиться слишком близко к ядру, где кулоновское притяжение ядра преобладает над магнитной силой (как показывает опыт Резерфорда). Внешний электрон обязан располагаться за сферой внутренних, узловых электронов, экранирующих заряд ядра. Это даёт синюю границу фотоэффекта. С другой стороны, радиус орбиты не может быть больше размеров атома: вне атомного остова магнитное поле быстро спадает, и атом в этой области не может удержать электроны на орбите. Так что, и для внутреннего фотоэффекта, где электрон остаётся в образце и ему не надо совершать работу выхода, должна быть красная граница фотоэффекта: свет с частотой меньшей f=h/2 R 2 M— неэффективен ( R— радиус атома). И такая красная граница обнаружена.

Интересно рассчитать эти границы, зная минимальный rи максимальный Rрадиусы орбиты электрона (Рис. 151). Минимальный радиус должен быть порядка сотни радиусов ядра, то есть электроны вряд ли могут располагаться ближе r≈10 –13м. Отсюда, — максимальная частота f=h/2 r 2 M≈10 21Гц. Поэтому, излучение с частотой много большей 10 21Гц (жёсткие гамма-лучи) уже не сможет вызвать фотоэффекта (что подтверждают и опыты). Максимальный радиус орбиты составляет порядка радиуса атома R≈10 –10м. Так что, красная граница фотоэффекта будет лежать в области частот f кр =h/2 R 2 M≈10 15Гц, но это есть видимый свет. И во внешнем фотоэффекте красная граница действительно соответствует видимому свету. Считают, что это связано с наличием работы выхода — минимальной энергией A, которую должен затратить электрон, дабы покинуть металл (§ 4.12). Тогда наименьшая частота света (красная граница), выбивающего электрон f кр =A/h. Но, не исключено, что красная граница и работа выхода связаны со свойствами самих атомов, а не металла. Тому есть подтверждения.

Баллистическая теория Ритца и картина мироздания - i_162.jpg

Так, самую длинноволновую красную границу имеют щелочные металлы, что естественно, поскольку у них наибольшие атомные радиусы R. У этих металлов красная граница расположена в диапазоне видимого света, а предельная длина волны λ= с/f кррастёт с ростом атомного радиуса. У металлов же с меньшими атомными радиусами, красная граница расположена в области ультрафиолета (Таблица 8). Выходит, и красная граница, и сама работа выхода заданы свойствами атомов, а не металла в целом. И это естественно, ведь металл — это, по сути, одна гигантская молекула, — много атомов, слившихся воедино: их электроны обобщены. А работа выхода — это энергия ионизации такой молекулы, пропорциональная энергии ионизации её атомов.

Баллистическая теория Ритца и картина мироздания - i_163.jpg

И, точно, у металлов с наименьшей энергией ионизации E и,— у щелочных металлов, — минимальна и работа выхода A, и эти энергии растут с уменьшением атомного радиуса (Таблица 9). Почему-то этот факт, загадочный с точки зрения квантовой теории, игнорируют, хоть и отмечают, что красная граница тем дальше сдвинута в сторону длинных волн, чем электроположительней атомы металла, то есть, — чем легче они отдают свои электроны [74]. К вопросу о природе работы выхода ещё вернёмся и обсудим её подробней (§ 4.12).

Итак, волновой подход не уступает квантовому, позволяя наглядно объяснить гораздо больше эффектов, прежде казавшихся совершенно загадочными. Волновая теория более удобна и для объяснения комптон-эффекта и рождения электрон-позитронных пар под действием гамма-излучения. Почему же не откажутся от квантового объяснения со всей его несуразностью? Первая причина состоит в игнорировании альтернативных подходов (путь, открытый Планком, давно забыт). Вторая причина — в упорном нежелании академических кругов подвергать сомнению основы квантовой механики, ведь фотоэффект — её фундамент. Поэтому, представители официальной науки всеми правдами и неправдами скрывают альтернативные пути и проблемы квантовой теории фотоэффекта. Это замалчивание, скрытое противостояние классической и неклассической физики, — восходит корнями к началу XX века, к тому же Столетову, с внезапной смертью которого связана тёмная история, каких немало в науке.

Столетов был сторонником классического подхода в физике и стоял на страже здравого смысла в науке, за что и пострадал [15]. Дело в том, что другой физик, Б. Голицын, задолго до Эйнштейна и Луи де Бройля выдвинул идею корпускулярно-волнового дуализма, в том числе в отношении света, приписав ему некую температуру, как меру энергии атомов света (подобно фотонам, имеющим свои энергии). Столетов выступил с резкой критикой этой идеи и добился того, что её признали ошибочной. После это ставили в вину Столетову: не окажи он своим авторитетом такого влияния, идея корпускулярно-волнового дуализма прижилась бы много раньше и принадлежала бы России. Якобы Столетов сам загубил идею, объяснявшую исследованный им фотоэффект. Но, на деле, Столетов, будучи тонким теоретиком и экспериментатором, глубоко чувствовал истинную природу явлений, интуитивно понимал, что идея корпускулярно-волнового дуализма, идущая от ненавистного ему мистического энергетизма Маха и Оствальда, — абсурдна, чужда материализму и чёткому атомистическому представлению о мире (§ 5.14). Не случайно, Столетов был другом и научным единомышленником таких учёных-материалистов, как Менделеев, Тимирязев, Циолковский, бывших противниками энергетизма и мистики [23].

Трагичен конец этой истории. Сторонники энергетизма Голицына, используя своё высокое положение, в ответ на критику Столетова добились, чтобы у того стали возникать служебные неприятности [15, 23]. А Столетов, будучи человеком принципиальным, не мог поступиться своими научными убеждениями. Началась настоящая травля учёного. Всё кончилось тяжёлым сердечным приступом и скорой смертью Столетова. Эта история мало освещалась. И, до сих пор, подобные тёмные дела продолжают замалчивать, помогая некой скрытой силе творить беспредел в науке и проводить в жизнь абсурдные неклассические идеи, сметая с пути всех, кто им сопротивляется. Именно эти силы не допускали таких гигантов мысли, как Столетов и Менделеев, — в Российскую Академию Наук, где ещё со времён её основателя — Петра I, установилось засилье иностранцев, не допускавших в академическую среду отечественных, оригинально и смело мыслящих учёных. И, до сих пор, в РАН главенствуют деятели некоренного происхождения, блокирующие прогрессивные направления исследований — под предлогом борьбы с лженаукой, которую сами на деле и представляют. Лишь немногие учёные-герои, вроде Столетова, осмеливаются, вопреки вышестоящим чинам и академикам, публично выступить против абсурда, обнажая его глупость, как в сказке про голого короля. Уже за одно это такие учёные достойны уважения. Их усилиями свет однажды разгонит мрак, царящий в учении о свете и фотоэффекте.

131
{"b":"149327","o":1}